Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Blood Purif ; 53(1): 23-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37926081

RESUMO

INTRODUCTION: Patients with acute kidney injury (AKI) or end stage kidney disease (ESKD) may require continuous renal replacement therapy (CRRT) as a supportive intervention. While CRRT is effective at achieving solute control and fluid balance, the indiscriminate nature of this procedure raises the possibility that beneficial substances may similarly be removed. Hepcidin, an antimicrobial peptide with pivotal roles in iron homeostasis and pathogen clearance, has biochemical properties amenable to direct removal via CRRT. We hypothesized that serum hepcidin levels would significantly decrease after initiation of CRRT. METHODS: In this prospective, observational trial, we enrolled 13 patients who required CRRT: 11 due to stage 3 AKI, and 2 due to critical illness in the setting of ESKD. Plasma was collected at the time of enrollment, and then plasma and effluent were collected at 10:00 a.m. on the following 3 days. Plasma samples were also collected from healthy controls, and we compared hepcidin concentrations in those with renal disease compared to normal controls, evaluated trends in hepcidin levels over time, and calculated the hepcidin sieving coefficient. RESULTS: Plasma hepcidin levels were significantly higher in patients initiating CRRT than in normal controls (158 ± 60 vs. 17 ± 3 ng/mL respectively, p < 0.001). Hepcidin levels were highest prior to CRRT initiation (158 ± 60 ng/mL), and were significantly lower on day 1 (102 ± 24 ng/mL, p < 0.001) and day 2 (56 ± 14 ng/mL, p < 0.001) before leveling out on day 3 (51 ± 11 ng/mL). The median sieving coefficient was consistent at 0.82-0.83 for each of 3 days. CONCLUSIONS: CRRT initiation is associated with significant decreases in plasma hepcidin levels over the first 2 days of treatment regardless of indication for CRRT, or presence of underlying ESKD. Since reduced hepcidin levels are associated with increased mortality and our data implicate CRRT in hepcidin removal, larger clinical studies evaluating relevant clinical outcomes based on hepcidin trends in this population should be pursued.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Humanos , Terapia de Substituição Renal/métodos , Estudos Prospectivos , Hepcidinas , Estudos Retrospectivos , Estado Terminal/terapia
2.
Am J Physiol Renal Physiol ; 325(3): F328-F344, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471421

RESUMO

Prerenal azotemia (PRA) is a major cause of acute kidney injury and uncommonly studied in preclinical models. We sought to develop and characterize a novel model of PRA that meets the clinical definition: acute loss of glomerular filtration rate (GFR) that returns to baseline with resuscitation. Adult male C57BL/6J wild-type (WT) and IL-6-/- mice were studied. Intraperitoneal furosemide (4 mg) or vehicle was administered at time = 0 and 3 h to induce PRA from volume loss. Resuscitation began at 6 h with 1 mL intraperitoneal saline for four times for 36 h. Six hours after furosemide administration, measured glomerular filtration rate was 25% of baseline and returned to baseline after saline resuscitation at 48 h. After 6 h of PRA, plasma interleukin (IL)-6 was significantly increased, kidney and liver histology were normal, kidney and liver lactate were normal, and kidney injury molecule-1 immunofluorescence was negative. There were 327 differentially regulated genes upregulated in the liver, and the acute phase response was the most significantly upregulated pathway; 84 of the upregulated genes (25%) were suppressed in IL-6-/- mice, and the acute phase response was the most significantly suppressed pathway. Significantly upregulated genes and their proteins were also investigated and included serum amyloid A2, serum amyloid A1, lipocalin 2, chemokine (C-X-C motif) ligand 1, and haptoglobin; hepatic gene expression and plasma protein levels were all increased in wild-type PRA and were all reduced in IL-6-/- PRA. This work demonstrates previously unknown systemic effects of PRA that includes IL-6-mediated upregulation of the hepatic acute phase response.NEW & NOTEWORTHY Prerenal azotemia (PRA) accounts for a third of acute kidney injury (AKI) cases yet is rarely studied in preclinical models. We developed a clinically defined murine model of prerenal azotemia characterized by a 75% decrease in measured glomerular filtration rate (GFR), return of measured glomerular filtration rate to baseline with resuscitation, and absent tubular injury. Numerous systemic effects were observed, such as increased plasma interleukin-6 (IL-6) and upregulation of the hepatic acute phase response.


Assuntos
Injúria Renal Aguda , Azotemia , Animais , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Reação de Fase Aguda/complicações , Azotemia/complicações , Biomarcadores , Modelos Animais de Doenças , Furosemida , Taxa de Filtração Glomerular/fisiologia , Interleucina-6/genética , Interleucina-6/metabolismo , Lipocalina-2/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L281-L296, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700201

RESUMO

Supportive mechanical ventilation is a necessary lifesaving treatment for acute respiratory distress syndrome (ARDS). This intervention often leads to injury exacerbation by ventilator-induced lung injury (VILI). Patterns of injury in ARDS and VILI are recognized to be heterogeneous; however, quantification of these injury distributions remains incomplete. Developing a more detailed understanding of injury heterogeneity, particularly how it varies in space and time, can help elucidate the mechanisms of VILI pathogenesis. Ultimately, this knowledge can be used to develop protective ventilation strategies that slow disease progression. To expand existing knowledge of VILI heterogeneity, we document the spatial evolution of cellular injury distribution and leukocyte infiltration, on the micro- and macroscales, during protective and injurious mechanical ventilation. We ventilated naïve mice using either high inspiratory pressure and zero positive end-expiratory pressure ventilation or low tidal volume with positive end-expiratory pressure. Distributions of cellular injury, identified with propidium iodide staining, were microscopically analyzed at three levels of injury severity. Cellular injury initiated in diffuse, quasi-random patterns, and progressed through expansion of high-density regions of injured cells termed "injury clusters." The density profile of the expanding injury regions suggests that stress shielding occurs, protecting the already injured regions from further damage. Spatial distribution of leukocytes did not correlate with that of cellular injury or ventilation-induced changes in lung function. These results suggest that protective ventilation protocols should protect the interface between healthy and injured regions to stymie injury propagation.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Leucócitos , Camundongos , Respiração com Pressão Positiva/métodos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
Kidney Int ; 97(5): 966-979, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081304

RESUMO

Neutrophil gelatinase associated lipocalin (NGAL, Lcn2) is the most widely studied biomarker of acute kidney injury (AKI). Previous studies have demonstrated that NGAL is produced by the kidney and released into the urine and plasma. Consequently, NGAL is currently considered a tubule specific injury marker of AKI. However, the utility of NGAL to predict AKI has been variable suggesting that other mechanisms of production are present. IL-6 is a proinflammatory cytokine increased in plasma by two hours of AKI and mediates distant organ effects. Herein, we investigated the role of IL-6 in renal and extra-renal NGAL production. Wild type mice with ischemic AKI had increased plasma IL-6, increased hepatic NGAL mRNA, increased plasma NGAL, and increased urine NGAL; all reduced in IL-6 knockout mice. Intravenous IL-6 in normal mice increased hepatic NGAL mRNA, plasma NGAL and urine NGAL. In mice with hepatocyte specific NGAL deletion (Lcn2hep-/-) and ischemic AKI, hepatic NGAL mRNA was absent, and plasma and urine NGAL were reduced. Since urine NGAL levels appear to be dependent on plasma levels, the renal handling of circulating NGAL was examined using recombinant human NGAL. After intravenous recombinant human NGAL administration to mice, human NGAL in mouse urine was detected by ELISA during proximal tubular dysfunction, but not in pre-renal azotemia. Thus, during AKI, IL-6 mediates hepatic NGAL production, hepatocytes are the primary source of plasma and urine NGAL, and plasma NGAL appears in the urine during proximal tubule dysfunction. Hence, our data change the paradigm by which NGAL should be interpreted as a biomarker of AKI.


Assuntos
Injúria Renal Aguda , Lipocalinas , Injúria Renal Aguda/diagnóstico , Proteínas de Fase Aguda/genética , Animais , Biomarcadores , Hepatócitos , Interleucina-6 , Lipocalina-2/genética , Camundongos
5.
J Biol Chem ; 293(44): 17008-17020, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209133

RESUMO

Vascular calcification (or mineralization) is a common complication of chronic kidney disease (CKD) and is closely associated with increased mortality and morbidity rates. We recently reported that activation of the activating transcription factor 4 (ATF4) pathway through the saturated fatty acid (SFA)-induced endoplasmic reticulum (ER) stress response plays a causative role in CKD-associated vascular calcification. Here, using mouse models of CKD, we 1) studied the contribution of the proapoptotic transcription factor CCAAT enhancer-binding protein homologous protein (CHOP) to CKD-dependent medial calcification, and 2) we identified an additional regulator of ER stress-mediated CHOP expression. Transgenic mice having smooth muscle cell (SMC)-specific CHOP expression developed severe vascular apoptosis and medial calcification under CKD. Screening of a protein kinase inhibitor library identified 16 compounds, including seven cyclin-dependent kinase (CDK) inhibitors, that significantly suppressed CHOP induction during ER stress. Moreover, selective CDK9 inhibitors and CRISPR/Cas9-mediated CDK9 reduction blocked SFA-mediated induction of CHOP expression, whereas inhibitors of other CDK isoforms did not. Cyclin T1 knockout inhibited SFA-mediated induction of CHOP and mineralization, whereas deletion of cyclin T2 and cyclin K promoted CHOP expression levels and mineralization. Of note, the CDK9-cyclin T1 complex directly phosphorylated and activated ATF4. These results demonstrate that the CDK9-cyclin T1 and CDK9-cyclin T2/K complexes have opposing roles in CHOP expression and CKD-induced vascular calcification. They further reveal that the CDK9-cyclin T1 complex mediates vascular calcification through CHOP induction and phosphorylation-mediated ATF4 activation.


Assuntos
Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Renal Crônica/complicações , Fator de Transcrição CHOP/genética , Calcificação Vascular/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Ciclina T/genética , Quinase 9 Dependente de Ciclina/genética , Estresse do Retículo Endoplasmático , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Ligação Proteica , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Fator de Transcrição CHOP/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/genética , Calcificação Vascular/fisiopatologia
6.
Kidney Int ; 91(5): 1057-1069, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28214022

RESUMO

Although it is well established that acute kidney injury (AKI) is a proinflammatory state, little is known about the endogenous counter-inflammatory response. IL-6 is traditionally considered a pro-inflammatory cytokine that is elevated in the serum in both human and murine AKI. However, IL-6 is known to have anti-inflammatory effects. Here we sought to investigate the role of IL-6 in the counter-inflammatory response after AKI, particularly in regard to the anti-inflammatory cytokine IL-10. Ischemic AKI was induced by bilateral renal pedicle clamping. IL-10-deficient mice had increased systemic and lung inflammation after AKI, demonstrating the role of IL-10 in limiting inflammation after AKI. We then sought to determine whether IL-6 mediates IL-10 production. Wild-type mice with AKI had a marked upregulation of splenic IL-10 that was absent in IL-6-deficient mice with AKI. In vitro, addition of IL-6 to splenocytes increased IL-10 production in CD4+ T cells, B cells, and macrophages. In vivo, CD4-deficient mice with AKI had reduced splenic IL-10 and increased lung myeloperoxidase activity. Thus, IL-6 directly increases IL-10 production and participates in the counter-inflammatory response after AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Injúria Renal Aguda/patologia , Animais , Linfócitos B/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucina-6/genética , Pulmão/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Baço/citologia , Regulação para Cima
7.
Kidney Int ; 92(2): 365-376, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28318621

RESUMO

Although dialysis has been used in the care of patients with acute kidney injury (AKI) for over 50 years, very little is known about the potential benefits of uremic control on systemic complications of AKI. Since the mortality of AKI requiring renal replacement therapy (RRT) is greater than half in the intensive care unit, a better understanding of the potential of RRT to improve outcomes is urgently needed. Therefore, we sought to develop a technically feasible and reproducible model of RRT in a mouse model of AKI. Models of low- and high-dose peritoneal dialysis (PD) were developed and their effect on AKI, systemic inflammation, and lung injury after ischemic AKI was examined. High-dose PD had no effect on AKI, but effectively cleared serum IL-6, and dramatically reduced lung inflammation, while low-dose PD had no effect on any of these three outcomes. Both models of RRT using PD in AKI in mice reliably lowered urea in a dose-dependent fashion. Thus, use of these models of PD in mice with AKI has great potential to unravel the mechanisms by which RRT may improve the systemic complications that have led to increased mortality in AKI. In light of recent data demonstrating reduced serum IL-6 and improved outcomes with prophylactic PD in children, we believe that our results are highly clinically relevant.


Assuntos
Injúria Renal Aguda/terapia , Lesão Pulmonar/prevenção & controle , Modelos Animais , Diálise Peritoneal/métodos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/complicações , Animais , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/etiologia , Camundongos , Diálise Peritoneal/instrumentação
8.
Am J Physiol Renal Physiol ; 306(9): F941-51, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24573386

RESUMO

The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes.


Assuntos
Cavéolas/metabolismo , Endocitose , Fluoresceína-5-Isotiocianato/análogos & derivados , Podócitos/metabolismo , Albumina Sérica/metabolismo , Animais , Biomarcadores/metabolismo , Cavéolas/efeitos dos fármacos , Linhagem Celular , Polaridade Celular , Endocitose/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/metabolismo , Taxa de Filtração Glomerular , Humanos , Cinética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/enzimologia , Masculino , Podócitos/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Transporte Proteico , Proteólise , Ratos , Ratos Sprague-Dawley , Receptores Fc/metabolismo , Transcitose , Proteínas de Transporte Vesicular/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-39167447

RESUMO

BACKGROUND: Plasma cystatin C is a reliable marker to estimate kidney function; however, it is unknown whether this remains true in patients receiving continuous kidney replacement therapy (CKRT). Herein, we tested the hypothesis that lower concentrations of plasma cystatin C during the first three days of CKRT would predict kidney function recovery. METHODS: We performed a retrospective observational study of 72 patients from a 126-patient, single-center CKRT study. We studied two a priori defined cohorts of patients without advanced CKD who had acute kidney injury requiring CKRT (AKI-CKRT): 1) with early kidney function recovery defined as liberation from KRT within seven days of CKRT initiation versus 2) with delayed kidney function recovery defined as receipt of KRT for >21 days or death while on KRT. Subsequent analysis included patients with advanced CKD and intermediate kidney function recovery (liberation between 8 and 21 days). Cystatin C was then measured on stored plasma, urine, and dialysis effluent collected prior to CKRT initiation and on days 1, 2, and 3 of CKRT. RESULTS: Plasma cystatin C was significantly lower in patients with early kidney function recovery in comparison to patients with delayed kidney function recovery on days 1 (1.79 vs. 2.39mg/L), 2 (1.91 vs. 2.38mg/L) and 3 (2.04 vs. 2.67mg/L) of CKRT. Sieving coefficient and CKRT clearance of cystatin C were similar for patients with early and delayed kidney function recovery. The lowest plasma cystatin C concentration on days 1-3 of CKRT predicted early kidney function recovery with an area under the receiver operating curve of 0.77 (P = 0.002), positive likelihood ratio of 5.60 for plasma cystatin C <1.30mg/L, and negative likelihood ratio of 0.17 for plasma cystatin C ≥1.88mg/L. CONCLUSION: Lower plasma cystatin C concentrations during the first three days of CKRT are associated with early kidney function recovery.

10.
Sci Rep ; 14(1): 13862, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879688

RESUMO

Acute kidney injury (AKI) is a systemic disease that affects energy metabolism in various remote organs in murine models of ischemic AKI. However, AKI-mediated effects in the liver have not been comprehensively assessed. After inducing ischemic AKI in 8-10-week-old, male C57BL/6 mice, mass spectrometry metabolomics revealed that the liver had the most distinct phenotype 24 h after AKI versus 4 h and 7 days. Follow up studies with in vivo [13C6]-glucose tracing on liver and kidney 24 h after AKI revealed 4 major findings: (1) increased flux through glycolysis and the tricarboxylic (TCA) cycle in both kidney and liver; (2) depleted hepatic glutathione levels and its intermediates despite unchanged level of reactive oxygen species, suggesting glutathione consumption exceeds production due to systemic oxidative stress after AKI; (3) hepatic ATP depletion despite unchanged rate of mitochondrial respiration, suggesting increased ATP consumption relative to production; (4) increased hepatic and renal urea cycle intermediates suggesting hypercatabolism and upregulation of the urea cycle independent of impaired renal clearance of nitrogenous waste. Taken together, this is the first study to describe the hepatic metabolome after ischemic AKI in a murine model and demonstrates that there is significant liver-kidney crosstalk after AKI.


Assuntos
Injúria Renal Aguda , Metabolismo Energético , Glutationa , Rim , Fígado , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Fígado/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Masculino , Camundongos , Isquemia/metabolismo , Metabolômica/métodos , Modelos Animais de Doenças , Estresse Oxidativo , Glicólise , Metaboloma
11.
Sci Rep ; 12(1): 643, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022484

RESUMO

Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia-reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.


Assuntos
Injúria Renal Aguda
12.
Am J Physiol Cell Physiol ; 301(4): C850-61, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21593452

RESUMO

The kidney is a key regulator of phosphate homeostasis. There are two predominant renal sodium phosphate cotransporters, NaPi2a and NaPi2c. Both are regulated by parathyroid hormone (PTH), which decreases the abundance of the NaPi cotransporters in the apical membrane of renal proximal tubule cells. The time course of PTH-induced removal of the two cotransporters from the apical membrane, however, is markedly different for NaPi2a compared with NaPi2c. In animals and in cell culture, PTH treatment results in almost complete removal of NaPi2a from the brush border (BB) within 1 h whereas for NaPi2c this process in not complete until 4 to 8 h after PTH treatment. The reason for this is poorly understood. We have previously shown that the unconventional myosin motor myosin VI is required for PTH-induced removal of NaPi2a from the proximal tubule BB. Here we demonstrate that myosin VI is also necessary for PTH-induced removal of NaPi2c from the apical membrane. In addition, we show that, while at baseline the two cotransporters have similar diffusion coefficients within the membrane, after PTH addition the diffusion coefficient for NaPi2a initially exceeds that for NaPi2c. Thus NaPi2c appears to remain "tethered" in the apical membrane for longer periods of time after PTH treatment, accounting, at least in part, for the difference in response times to PTH of NaPi2a versus NaPi2c.


Assuntos
Hormônio Paratireóideo/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Actinas/fisiologia , Animais , Linhagem Celular , Citoesqueleto/fisiologia , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Gambás , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
13.
Kidney Int ; 80(5): 535-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677638

RESUMO

Cholesterol is pumped out of the cells in different tissues, including the vasculature, intestine, liver, and kidney, by the ATP-binding cassette transporters. Ligands that activate the liver X receptor (LXR) modulate this efflux. Here we determined the effects of LXR agonists on the regulation of phosphate transporters. Phosphate homeostasis is regulated by the coordinated action of the intestinal and renal sodium-phosphate (NaPi) transporters, and the loss of this regulation causes hyperphosphatemia. Mice treated with DMHCA or TO901317, two LXR agonists that prevent atherosclerosis in ApoE or LDLR knockout mice, significantly decreased the activity of intestinal and kidney proximal tubular brush border membrane sodium gradient-dependent phosphate uptake, decreased serum phosphate, and increased urine phosphate excretion. The effects of DMHCA were due to a significant decrease in the abundance of the intestinal and renal NaPi transport proteins. The same effect was also found in opossum kidney cells in culture after treatment with either agonist. There was increased nuclear expression of the endogenous LXR receptor, a reduction in NaPi4 protein abundance (the main type II NaPi transporter in the opossum cells), and a reduction in NaPi co-transport activity. Thus, LXR agonists modulate intestinal and renal NaPi transporters and, in turn, serum phosphate levels.


Assuntos
Receptores Nucleares Órfãos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Transporte Biológico , Homeostase , Humanos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Ligantes , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/agonistas , Fosfatos/metabolismo , Fosfatos/urina
14.
iScience ; 23(5): 101105, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32408172

RESUMO

Excessive levels of saturated fatty acids are toxic to vascular smooth muscle cells (VSMCs). We previously reported that mice lacking VSMC-stearoyl-CoA desaturase (SCD), a major enzyme catalyzing the detoxification of saturated fatty acids, develop severe vascular calcification from the massive accumulation of lipid metabolites containing saturated fatty acids. However, the mechanism by which SCD deficiency causes vascular calcification is not completely understood. Here, we demonstrate that saturated fatty acids significantly inhibit autophagic flux in VSMCs, contributing to vascular calcification and apoptosis. Mechanistically, saturated fatty acids are accumulated as saturated lysophosphatidic acids (LPAs) (i.e. 1-stearoyl-LPA) possibly synthesized through the reaction of GPAT4 at the contact site between omegasomes and the MAM. The accumulation of saturated LPAs at the contact site causes abnormal formation of omegasomes, resulting in accumulation of autophagosomal precursor isolation membranes, leading to inhibition of autophagic flux. Thus, saturated LPAs are major metabolites mediating autophagy inhibition and vascular calcification.

15.
Front Physiol ; 11: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695013

RESUMO

Mechanical ventilation is an essential lifesaving therapy in acute respiratory distress syndrome (ARDS) that may cause ventilator-induced lung injury (VILI) through a positive feedback between altered alveolar mechanics, edema, surfactant inactivation, and injury. Although the biophysical forces that cause VILI are well documented, a knowledge gap remains in the quantitative link between altered parenchymal structure (namely alveolar derecruitment and flooding), pulmonary function, and VILI. This information is essential to developing diagnostic criteria and ventilation strategies to reduce VILI and improve ARDS survival. To address this unmet need, we mechanically ventilated mice to cause VILI. Lung structure was measured at three air inflation pressures using design-based stereology, and the mechanical function of the pulmonary system was measured with the forced oscillation technique. Assessment of the pulmonary surfactant included total surfactant, distribution of phospholipid aggregates, and surface tension lowering activity. VILI-induced changes in the surfactant included reduced surface tension lowering activity in the typically functional fraction of large phospholipid aggregates and a significant increase in the pool of surface-inactive small phospholipid aggregates. The dominant alterations in lung structure at low airway pressures were alveolar collapse and flooding. At higher airway pressures, alveolar collapse was mitigated and the flooded alveoli remained filled with proteinaceous edema. The loss of ventilated alveoli resulted in decreased alveolar gas volume and gas-exchange surface area. These data characterize three alveolar phenotypes in murine VILI: flooded and non-recruitable alveoli, unstable alveoli that derecruit at airway pressures below 5 cmH2O, and alveoli with relatively normal structure and function. The fraction of alveoli with each phenotype is reflected in the proportional changes in pulmonary system elastance at positive end expiratory pressures of 0, 3, and 6 cmH2O.

16.
Am J Physiol Cell Physiol ; 297(6): C1339-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776390

RESUMO

Parathyroid hormone (PTH) plays a critical role in the regulation of renal phosphorous homeostasis by altering the levels of the sodium-phosphate cotransporter NaPi2a in the brush border membrane (BBM) of renal proximal tubular cells. While details of the molecular events of PTH-induced internalization of NaPi2a are emerging, the precise events governing NaPi2a removal from brush border microvilli in response to PTH remain to be fully determined. Here we use a novel application of total internal reflection fluorescence microscopy to examine how PTH induces movement of NaPi2a out of brush border microvilli in living cells in real time. We show that a dynamic actin cytoskeleton is required for NaPi2a removal from the BBM in response to PTH. In addition, we demonstrate that a myosin motor that has previously been shown to be coregulated with NaPi2a, myosin VI, is necessary for PTH-induced removal of NaPi2a from BBM microvilli.


Assuntos
Actinas/metabolismo , Membrana Celular/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Hormônio Paratireóideo/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Genes Dominantes , Túbulos Renais Proximais/citologia , Microscopia Confocal , Microscopia de Fluorescência/métodos , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Gambás
17.
JCI Insight ; 1(18): e88646, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27812542

RESUMO

Emerging evidence indicates that upregulation of the ER stress-induced pro-osteogenic transcription factor ATF4 plays an important role in vascular calcification, a common complication in patients with aging, diabetes, and chronic kidney disease (CKD). In this study, we demonstrated the pathophysiological role of ATF4 in vascular calcification using global Atf4 KO, smooth muscle cell-specific (SMC-specific) Atf4 KO, and transgenic (TG) mouse models. Reduced expression of ATF4 in global ATF4-haplodeficient and SMC-specific Atf4 KO mice reduced medial and atherosclerotic calcification under normal kidney and CKD conditions. In contrast, increased expression of ATF4 in SMC-specific Atf4 TG mice caused severe medial and atherosclerotic calcification. We further demonstrated that ATF4 transcriptionally upregulates the expression of type III sodium-dependent phosphate cotransporters (PiT1 and PiT2) by interacting with C/EBPß. These results demonstrate that the ER stress effector ATF4 plays a critical role in the pathogenesis of vascular calcification through increased phosphate uptake in vascular SMCs.


Assuntos
Fator 4 Ativador da Transcrição/genética , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , Animais , Células Cultivadas , Humanos , Bombas de Íon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso , Músculo Liso Vascular/citologia , Calcificação Vascular/patologia
18.
J Clin Invest ; 125(12): 4544-58, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26517697

RESUMO

Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fosfatidiletanolaminas/toxicidade , Estearoil-CoA Dessaturase/metabolismo , Calcificação Vascular/metabolismo , Animais , Estresse do Retículo Endoplasmático/genética , Camundongos , Camundongos Knockout , Estearoil-CoA Dessaturase/genética , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/patologia
19.
Physiol Rep ; 3(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26333830

RESUMO

Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and plays an important role in albumin endocytosis in podocytes. Knockdown of Shank2 in cultured human podocytes decreased albumin uptake, but the decrease was not statistically significant likely due to residual Shank2 still present in the knockdown podocytes. Complete knockout of Shank2 in podocytes significantly diminished albumin uptake in vitro. Shank2 knockout mice develop proteinuria by 8 weeks of age. To examine albumin handling in vivo in wild-type and Shank2 knockout mice we used multiphoton intravital imaging. While FITC-labeled albumin was rapidly seen in the renal tubules of wild-type mice after injection, little albumin was seen in the tubules of Shank2 knockout mice indicating dysregulated renal albumin trafficking in the Shank2 knockouts. We have previously found that caveolin-1 is required for albumin endocytosis in cultured podocytes. Shank2 knockout mice had significantly decreased expression and altered localization of caveolin-1 in podocytes suggesting that disruption of albumin endocytosis in Shank2 knockouts is mediated via caveolin-1. In summary, we have identified Shank2 as another component of the albumin endocytic pathway in podocytes.

20.
PLoS One ; 9(6): e99771, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924335

RESUMO

Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and glomerulosclerosis in albuminuric diseases. Modifiers of lysosomal activity may have therapeutic potential in slowing the progression of glomerulosclerosis by enhancing the ability of podocytes to process and degrade albumin.


Assuntos
Albuminas/metabolismo , Lisossomos/metabolismo , Podócitos/metabolismo , Animais , Células Cultivadas , Síndrome de Denys-Drash/genética , Síndrome de Denys-Drash/patologia , Modelos Animais de Doenças , Endocitose , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Camundongos , Camundongos Transgênicos , Proteólise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica/farmacocinética , Proteínas WT1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa