RESUMO
BACKGROUND: Globally, key subpopulations such as healthcare workers (HCW) may have a higher risk of contracting SARS-CoV-2. In Uganda, limited access to Personal Protective Equipment and lack of clarity on the extent/pattern of community spread may exacerbate this situation. The country established infection prevention/control measures such as lockdowns and proper hand hygiene. However, due to resource limitations and fatigue, compliance is low, posing continued onward transmission risk. This study aimed to describe extent of SARS-CoV-2 seroprevalence in selected populations within the Rakai region of Uganda. METHODS: From 30th November 2020 to 8th January 2021, we collected venous blood from 753 HCW at twenty-six health facilities in South-Central Uganda and from 227 population-cohort participants who reported specific COVID-19 like symptoms (fever, cough, loss of taste and appetite) in a prior phone-based survey conducted (between May and August 2020) during the first national lockdown. 636 plasma specimens collected from individuals considered high risk for SARS-CoV-2 infection, prior to the first confirmed COVID-19 case in Uganda were also retrieved. Specimens were tested for antibodies to SARS-CoV-2 using the CoronaChek™ rapid COVID-19 IgM/IgG lateral flow test assay. IgM only positive samples were confirmed using a chemiluminescent microparticle immunoassay (CMIA) (Architect AdviseDx SARS-CoV-2 IgM) which targets the spike protein. SARS-CoV-2 exposure was defined as either confirmed IgM, both IgM and IgG or sole IgG positivity. Overall seroprevalence in each participant group was estimated, adjusting for test performance. RESULTS: The seroprevalence of antibodies to SARS-CoV-2 in HCW was 26.7% [95%CI: 23.5, 29.8] with no difference by sex, age, or cadre. We observed no association between PPE use and seropositivity among exposed healthcare workers. Of the phone-based survey participants, 15.6% [95%CI: 10.9, 20.3] had antibodies to SARS-CoV-2, with no difference by HIV status, sex, age, or occupation. Among 636 plasma specimens collected prior to the first confirmed COVID-19 case, 2.3% [95%CI: 1.2, 3.5] were reactive. CONCLUSIONS: Findings suggest high seroprevalence of antibodies to SARS-CoV-2 among HCW and substantial exposure in persons presenting with specific COVID-19 like symptoms in the general population of South-Central Uganda. Based on current limitations in serological test confirmation, it remains unclear whether seroprevalence among plasma specimens collected prior to confirmation of the first COVID-19 case implies prior SARS-CoV-2 exposure in Uganda.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Controle de Doenças Transmissíveis , Pessoal de Saúde , Humanos , Estudos Soroepidemiológicos , Uganda/epidemiologiaRESUMO
BACKGROUND: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are leading causes of viral severe acute respiratory illnesses in childhood. Both the two viruses belong to the Pneumoviridae family and show overlapping clinical, epidemiological and transmission features. However, it is unknown whether these two viruses have similar geographic spread patterns which may inform designing and evaluating their epidemic control measures. METHODS: We conducted comparative phylogenetic and phylogeographic analyses to explore the spatial-temporal patterns of HMPV and RSV across Africa using 232 HMPV and 842 RSV attachment (G) glycoprotein gene sequences obtained from 5 countries (The Gambia, Zambia, Mali, South Africa, and Kenya) between August 2011 and January 2014. RESULTS: Phylogeographic analyses found frequently similar patterns of spread of RSV and HMPV. Viral sequences commonly clustered by region, i.e., West Africa (Mali, Gambia), East Africa (Kenya) and Southern Africa (Zambia, South Africa), and similar genotype dominance patterns were observed between neighbouring countries. Both HMPV and RSV country epidemics were characterized by co-circulation of multiple genotypes. Sequences from different African sub-regions (East, West and Southern Africa) fell into separate clusters interspersed with sequences from other countries globally. CONCLUSION: The spatial clustering patterns of viral sequences and genotype dominance patterns observed in our analysis suggests strong regional links and predominant local transmission. The geographical clustering further suggests independent introduction of HMPV and RSV variants in Africa from the global pool, and local regional diversification.
Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , África/epidemiologia , Humanos , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Filogenia , Filogeografia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Análise Espaço-TemporalRESUMO
Following the publication of this article [1], it was noted that due to a typesetting error the figure legends were paired incorrectly.
RESUMO
BACKGROUND: Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in young children. Whole genome sequencing enables better identification of transmission events and outbreaks, which is not always possible with sub-genomic sequences. RESULTS: We report a 2-reaction amplicon-based next generation sequencing method to determine the complete genome sequences of five HMPV strains, representing three subgroups (A2, B1 and B2), directly from clinical samples. In addition to reporting five novel HMPV genomes from Africa we examined genetic diversity and sequence patterns of publicly available HMPV genomes. We found that the overall nucleotide sequence identity was 71.3 and 80% for HMPV group A and B, respectively, the diversity between HMPV groups was greater at amino acid level for SH and G surface protein genes, and multiple subgroups co-circulated in various countries. Comparison of sequences between HMPV groups revealed variability in G protein length (219 to 241 amino acids) due to changes in the stop codon position. Genome-wide phylogenetic analysis showed congruence with the individual gene sequence sets except for F and M2 genes. CONCLUSION: This is the first genomic characterization of HMPV genomes from African patients.
Assuntos
Genoma Viral/genética , Metapneumovirus/genética , Infecções por Paramyxoviridae/genética , Sequenciamento Completo do Genoma , Sequência de Aminoácidos , Genótipo , Humanos , Quênia/epidemiologia , Metapneumovirus/patogenicidade , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Proteínas Virais/genética , Zâmbia/epidemiologiaRESUMO
BACKGROUND: Human metapneumovirus (HMPV) is an important respiratory pathogen that causes seasonal epidemics of acute respiratory illness and contributes significantly to childhood pneumonia. Current knowledge and understanding on its patterns of spread, prevalence and persistence in communities in low resource settings is limited. METHODS: We present findings of a molecular-epidemiological analysis of nasal samples from children < 5 years of age admitted with syndromic pneumonia between 2007 and 2016 to Kilifi County Hospital, coastal Kenya. HMPV infection was detected using real-time RT-PCR and positives sequenced in the fusion (F) and attachment (G) genes followed by phylogenetic analysis. The association between disease severity and HMPV subgroup was assessed using Fisher's exact test. RESULTS: Over 10 years, 274/6756 (4.1%) samples screened were HMPV positive. Annual prevalence fluctuated between years ranging 1.2 to 8.7% and lowest in the recent years (2014-2016). HMPV detections were most frequent between October of one year to April of the following year. Genotyping was successful for 205/274 (74.8%) positives revealing clades A2b (41.0%) and A2c (10.7%), and subgroups B1 (23.4%) and B2 (24.9%). The dominance patterns were: clade A2b between 2007 and 11, subgroup B1 between 2012 and 14, and clade A2c in more recent epidemics. Subgroup B2 viruses were present in all the years. Temporal phylogenetic clustering within the subgroups for both local and global sequence data was seen. Subgroups occurring in each epidemic season were comprised of multiple variants. Pneumonia severity did not vary by subgroup (p = 0.264). In both the F and G gene, the sequenced regions were found to be predominantly under purifying selection. CONCLUSION: Subgroup patterns from this rural African setting temporally map with global strain distribution, suggesting a well-mixed global virus transmission pool of HMPV. Persistence in the local community is characterized by repeated introductions of HMPV variants from the global pool. The factors underlying the declining prevalence of HMPV in this population should be investigated.
Assuntos
Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , Infecções por Paramyxoviridae , Pneumonia , Idade de Início , Pré-Escolar , Epidemias , Feminino , Genótipo , Hospitais Pediátricos/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Masculino , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Admissão do Paciente/estatística & dados numéricos , Filogenia , Pneumonia/epidemiologia , Pneumonia/virologia , Vigilância da População , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Estações do AnoRESUMO
Short tandem repeat (STR) variation is an often overlooked source of variation between genomes. STRs comprise about 3% of the human genome and are highly polymorphic. Some cause Mendelian disease, and others affect gene expression. Their contribution to common disease is not well-understood, but recent software tools designed to genotype STRs using short read sequencing data will help address this. Here, we compare software that genotypes common STRs and rarer STR expansions genome-wide, with the aim of applying them to population-scale genomes. By using the Genome-In-A-Bottle (GIAB) consortium and 1000 Genomes Project short-read sequencing data, we compare performance in terms of sequence length, depth, computing resources needed, genotyping accuracy and number of STRs genotyped. To ensure broad applicability of our findings, we also measure genotyping performance against a set of genomes from clinical samples with known STR expansions, and a set of STRs commonly used for forensic identification. We find that HipSTR, ExpansionHunter and GangSTR perform well in genotyping common STRs, including the CODIS 13 core STRs used for forensic analysis. GangSTR and ExpansionHunter outperform HipSTR for genotyping call rate and memory usage. ExpansionHunter denovo (EHdn), STRling and GangSTR outperformed STRetch for detecting expanded STRs, and EHdn and STRling used considerably less processor time compared to GangSTR. Analysis on shared genomic sequence data provided by the GIAB consortium allows future performance comparisons of new software approaches on a common set of data, facilitating comparisons and allowing researchers to choose the best software that fulfils their needs.
Assuntos
Genoma Humano , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Software , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
The role of sub-Saharan Africa in the global spread of influenza viruses remains unclear due to insufficient spatiotemporal sequence data. Here, we analyzed 222 codon-complete sequences of influenza A viruses (IAVs) sampled between 2011 and 2013 from five countries across sub-Saharan Africa (Kenya, Zambia, Mali, Gambia, and South Africa); these genomes were compared with 1209 contemporaneous global genomes using phylogeographical approaches. The spread of influenza in sub-Saharan Africa was characterized by (i) multiple introductions of IAVs into the region over consecutive influenza seasons, with viral importations originating from multiple global geographical regions, some of which persisted in circulation as intra-subtype reassortants for multiple seasons, (ii) virus transfer between sub-Saharan African countries, and (iii) virus export from sub-Saharan Africa to other geographical regions. Despite sparse data from influenza surveillance in sub-Saharan Africa, our findings support the notion that influenza viruses persist as temporally structured migrating metapopulations in which new virus strains can emerge in any geographical region, including in sub-Saharan Africa; these lineages may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied sub-Saharan Africa regions is required to inform vaccination strategies in those regions.
Assuntos
Vírus da Influenza A , Influenza Humana , Filogenia , Filogeografia , Vírus Reordenados , Humanos , África Subsaariana/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus da Influenza A/genética , Vírus Reordenados/genética , Genoma ViralRESUMO
Background: Training for PhD researchers was previously identified by the Wellcome Trust funded Emerging Research Cultures project as an area for further investigation to ensure an inclusive culture which enables PhD students to become well-rounded researchers. Methods: The Taskforce on Training conducted a survey of 35 Wellcome Trust funded PhD students and 10 programme administrators to evaluate the provision of training in eight key areas. This survey examined a number of issues, such as availability and knowledge of training, potential gaps in training, and the perceived usefulness of training. Results: PhD students reported that training was generally useful and viewed as important; with technical training being particularly highly valued. However, the survey identified that students desired additional training in project management and personal development. Surveying programme administrators highlighted the wide variety in training availability for students across different Wellcome Trust programmes currently running in the UK. Conclusion: In response to these findings, several recommendations were suggested. Examples include; promotion of peer mentoring for PhD students, and alternative methods for delivery of wellbeing training. However, this report only explores the views of a small number of Wellcome Trust funded PhD students and would benefit from further research into the experiences of PhD students, programme administrators, and PhD supervisors.
RESUMO
Background: Globally, key subpopulations such as healthcare workers (HCWs) have a higher risk of contracting SARS-CoV-2. In Uganda, limited access to personal protective equipment amidst lack of clarity on the extent and pattern of the community disease burden may exacerbate this situation. We assessed SARS-CoV-2 antibody seroprevalence among high-risk sub-populations in South-central Uganda, including HCWs, persons within the general population previously reporting experiencing key COVID-19 like symptoms (fever, cough, loss of taste and smell) and archived plasma specimens collected between October 2019 â" 18 th March 2020, prior to confirmation of COVID-19 in Uganda. Methods: From November 2020 - January 2021, we collected venous blood from HCWs at selected health facilities in South-Central Uganda and from population-cohort participants who reported specific COVID-19 like symptoms in a prior phone-based survey conducted (between May to August 2020) during the first national lockdown. Pre-lockdown plasma collected (between October 2019 and March 18 th , 2020) from individuals considered high risk for SARS-CoV-2 infection was retrieved. Specimens were tested for antibodies to SARS-CoV-2 using the CoronaChek TM rapid COVID-19 IgM/IgG lateral flow test assay. IgM only positive samples were confirmed using a chemiluminescent microparticle immunoassay (CMIA) (Architect AdviseDx SARS-CoV-2 IgM) which targets the spike protein. SARS-CoV-2 exposure was defined as either confirmed IgM, both IgM and IgG or sole IgG positivity. Results: The seroprevalence of antibodies to SARS-CoV-2 in HCWs was 21.1% [95%CI: 18.2-24.2]. Of the phone-based survey participants, 11.9% [95%CI: 8.0-16.8] had antibodies to SARS-CoV-2. Among 636 pre-lockdown plasma specimens, 1.7% [95%CI: 0.9-3.1] were reactive. Conclusions: Findings suggest a high seroprevalence of antibodies to SARS-CoV-2 among HCWs and substantial exposure in persons presenting with specific COVID-19 like symptoms in the general population of South-central Uganda. Based on current limitations in serological test confirmation, it remains unclear whether pre-lockdown seropositivity implies prior SARS-CoV-2 exposure in Uganda.
RESUMO
Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in communities, and is a leading cause of acute respiratory illness in young children. There is paucity of genomic data from purposively sampled populations by which to investigate evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking outpatient care in nine health facilities across a defined geographical area (â¼890 km2), over two RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus introductions into the area and co-circulation of distinct genetic clusters, which transmitted and diversified locally with varying frequency. Increase in relative genetic diversity paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel nonsynonymous change (K68Q) in antigenic site ∅ in the Fusion protein. RSVB diversity was additionally marked by signature nonsynonymous substitutions that were unique to particular genomic clusters, some under diversifying selection. Our findings provide insights into recent evolutionary and epidemiological behaviors of RSVB, and highlight possible emergence of a novel antigenic variant, which has implications on current prophylactic strategies in development.
RESUMO
BACKGROUND: Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses. OBJECTIVES: Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity. STUDY DESIGN: Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples. RESULTS: N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses. CONCLUSIONS: An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy.