Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558075

RESUMO

Short tandem repeat (STR) variation is an often overlooked source of variation between genomes. STRs comprise about 3% of the human genome and are highly polymorphic. Some cause Mendelian disease, and others affect gene expression. Their contribution to common disease is not well-understood, but recent software tools designed to genotype STRs using short read sequencing data will help address this. Here, we compare software that genotypes common STRs and rarer STR expansions genome-wide, with the aim of applying them to population-scale genomes. By using the Genome-In-A-Bottle (GIAB) consortium and 1000 Genomes Project short-read sequencing data, we compare performance in terms of sequence length, depth, computing resources needed, genotyping accuracy and number of STRs genotyped. To ensure broad applicability of our findings, we also measure genotyping performance against a set of genomes from clinical samples with known STR expansions, and a set of STRs commonly used for forensic identification. We find that HipSTR, ExpansionHunter and GangSTR perform well in genotyping common STRs, including the CODIS 13 core STRs used for forensic analysis. GangSTR and ExpansionHunter outperform HipSTR for genotyping call rate and memory usage. ExpansionHunter denovo (EHdn), STRling and GangSTR outperformed STRetch for detecting expanded STRs, and EHdn and STRling used considerably less processor time compared to GangSTR. Analysis on shared genomic sequence data provided by the GIAB consortium allows future performance comparisons of new software approaches on a common set of data, facilitating comparisons and allowing researchers to choose the best software that fulfils their needs.


Assuntos
Genoma Humano , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Software , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
2.
Sci Rep ; 14(1): 18987, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152215

RESUMO

The role of sub-Saharan Africa in the global spread of influenza viruses remains unclear due to insufficient spatiotemporal sequence data. Here, we analyzed 222 codon-complete sequences of influenza A viruses (IAVs) sampled between 2011 and 2013 from five countries across sub-Saharan Africa (Kenya, Zambia, Mali, Gambia, and South Africa); these genomes were compared with 1209 contemporaneous global genomes using phylogeographical approaches. The spread of influenza in sub-Saharan Africa was characterized by (i) multiple introductions of IAVs into the region over consecutive influenza seasons, with viral importations originating from multiple global geographical regions, some of which persisted in circulation as intra-subtype reassortants for multiple seasons, (ii) virus transfer between sub-Saharan African countries, and (iii) virus export from sub-Saharan Africa to other geographical regions. Despite sparse data from influenza surveillance in sub-Saharan Africa, our findings support the notion that influenza viruses persist as temporally structured migrating metapopulations in which new virus strains can emerge in any geographical region, including in sub-Saharan Africa; these lineages may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied sub-Saharan Africa regions is required to inform vaccination strategies in those regions.


Assuntos
Vírus da Influenza A , Influenza Humana , Filogenia , Filogeografia , Vírus Reordenados , Humanos , África Subsaariana/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus da Influenza A/genética , Vírus Reordenados/genética , Genoma Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa