Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 12: 8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351575

RESUMO

BACKGROUND: Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n-octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). RESULTS: Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 µmol gDCW-1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. CONCLUSION: This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.


Assuntos
Citocromo P-450 CYP4A/metabolismo , Escherichia coli/enzimologia , Octanos/metabolismo , Técnicas de Cultura Celular por Lotes , Biocatálise , Reatores Biológicos , Citocromo P-450 CYP4A/genética , Escherichia coli/fisiologia , Glucose/metabolismo , Hidroxilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Temperatura
2.
Appl Microbiol Biotechnol ; 96(6): 1507-16, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22410745

RESUMO

CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85 µM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6-0.8 µM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5-1.0 µmol P450 g (DCW)⁻¹, for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7 g octanol L (BRM)⁻¹ was obtained within 24 h (0.34 g L (BRM)⁻¹ h⁻¹) with IPTG-induced cells containing only 0.20 µmol P450 g (DCW)⁻¹, when glucose (22 g L (BRM)⁻¹) was added for cofactor regeneration.


Assuntos
Proteínas de Bactérias/genética , Citocromo P-450 CYP4A/genética , Escherichia coli/metabolismo , Mycobacterium/enzimologia , Octanos/metabolismo , Óperon , Proteínas de Bactérias/metabolismo , Citocromo P-450 CYP4A/metabolismo , Escherichia coli/genética , Expressão Gênica , Hidroxilação , Mycobacterium/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa