Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(6): 3617-3636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36456669

RESUMO

Human exposure to ionizing radiation in the environment is mainly due to naturally occurring radionuclides in the soils, building materials and rocks, but the level may vary depending on the anthropogenic activities prevalent in each location. Presently, in Nigeria, there are concerns due to environmental health implications of all sorts of mineral mining and processing spreading across the southwestern states of the country. This work determines the activity concentrations of naturally occurring radionuclide materials (NORMs) in the farmland soil with the aim of evaluating the radiation hazards. A total of 200 composite soil samples were taken from five states in the southwest of Nigeria, close to active mining sites at the root (0.2 m) and at deep planting zones (0.5 m) for analysis by gamma-ray spectrometry using NaI(Tl) detector. The activity concentrations of natural radionuclides in the composite soil samples were determined to vary in the order of 40 K > 232Th > 226Ra/238U for all locations. In contrast to the other locations, Olode and Igbokoda had average radium equivalent activities (Raeq) to be 1.6 and 1.8 times, respectively, higher than the reference limit of 370 Bqkg-1. The estimated excess life cancer risk values were lower than the 0.29 × 10-3 global average value for soil by United Nations on Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and International Commission on Radiological Protection (ICRP). Negative and low skewness values of 0.61 and 1.20 were obtained for 40 K in Itagunmodi, and also 0.47 and 0.66 for 232Th were obtained in Sagamu. The kurtosis analysis of the activity concentrations was low and negative for soil at Itagunmodi for 40 K and 226Ra/238U; Olode for 40 K and 232Th; and Igbokoda for 226Ra/238U and 232Th where mining activities are commonly practiced. The variation in the results has been attributed to different agriculture practices and artisanal mining operations in each location.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Solo/química , Radioisótopos de Potássio/análise , Nigéria , Fazendas , Poluentes Radioativos do Solo/análise , Tório/análise , Radioisótopos/análise , Rádio (Elemento)/análise
2.
Radiat Environ Biophys ; 61(4): 597-608, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175773

RESUMO

Proper documentation of baseline radiation data of different environments is an important step toward adequate environmental monitoring, and it provides quick means to quantitatively check and determine possible radionuclide contamination by anthropogenic sources. Besides, such documentation is useful for decision making processes, assessment of dose rates to the public, epidemiological studies, and environmental regulations. This review summarizes the results of studies conducted on radioactivity in Nigerian environments. For most soil samples, the levels of radioactivity are well within the world averages of 33, 45, and 420 Bq kg-1 for 226Ra, 232Th and 40K, respectively. Other soil samples from regions such as Abeokuta in the southwest, and Jos in the northcentral have been described as high background radiation areas with radioactivity values comparable with those obtained from known high background radiation areas such as the Odisha (formerly Orissa) coast in India (with values reported as 350, 2,825, and 180 Bq kg-1 for 238U/226Ra, 232Th, and 40K, respectively). In some parts of Nigeria, surface and underground water sources used for drinking and other purposes also present elevated levels of 226Ra above the world range of 0.01 to 0.1 Bq l-1 and the tolerable levels recommended by the World Health Organization and U.S. Environmental Protection Agency. Corresponding radiation doses due to measured radioactivities from different environments were estimated and compared with those reported in similar studies around the world. More so, the human and environmental health hazards that might be associated with the reported radioactivity in different environmental settings are discussed. The present report is expected to support authorities in developing appropriate regulations to protect the public from radiation exposure arising from environmental radioactivity. The report also examines other areas of consideration for future studies to ensure adequate radiation monitoring in Nigeria.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Radioisótopos de Potássio/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Nigéria , Doses de Radiação , Radiação de Fundo , Monitoramento de Radiação/métodos , Solo , Rádio (Elemento)/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa