Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677513

RESUMO

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , Temperatura
2.
Plant J ; 116(3): 855-870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548081

RESUMO

Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.


Assuntos
Arabidopsis , Celulose , Celulose/metabolismo , Lateralidade Funcional , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo
3.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): 1095-1103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215540

RESUMO

We examined the point spread function of the polarized light field microscope and established a computational framework to solve the forward problem in polarized light field imaging, for the purpose of furthering its use as a quantitative tool for measuring three-dimensional maps of the birefringence of transparent objects. We recorded experimental polarized light field images of small calcite crystals and of larger birefringent objects and compared our experimental results to numerical simulations based on polarized light ray tracing. We find good agreement between all our experiments and simulations, which leads us to propose polarized light ray tracing as one solution to the forward problem for the complex, nonlinear imaging mode of the polarized light field microscope. Solutions to the ill-posed inverse problem might be found in analytical methods and/or deep learning approaches that are based on training data generated by the forward solution presented here.

4.
Biophys J ; 118(10): 2366-2384, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32294480

RESUMO

Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.


Assuntos
Hipocampo , Microscopia , Animais , Birrefringência , Dendritos , Técnicas In Vitro , Camundongos
5.
J Opt Soc Am A Opt Image Sci Vis ; 37(9): 1465-1479, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902437

RESUMO

We investigate rotational diffusion of fluorescent molecules in angular potential wells, the excitation and subsequent emissions from these diffusing molecules, and the imaging of these emissions with high-NA aplanatic optical microscopes. Although dipole emissions only transmit six low-frequency angular components, we show that angular structured illumination can alias higher-frequency angular components into the passband of the imaging system. We show that the number of measurable angular components is limited by the relationships between three time scales: the rotational diffusion time, the fluorescence decay time, and the acquisition time. We demonstrate our model by simulating a numerical phantom in the limits of fast angular diffusion, slow angular diffusion, and weak potentials.

6.
Proc Natl Acad Sci U S A ; 114(17): E3376-E3384, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28411214

RESUMO

In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.

7.
Proc Natl Acad Sci U S A ; 114(40): 10648-10653, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-29073038

RESUMO

Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven "retrograde flow" of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVß3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Integrina alfaVbeta3/metabolismo , Actinas/genética , Animais , Linhagem Celular , Movimento Celular/fisiologia , Citoesqueleto/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Adesões Focais/genética , Integrina alfaVbeta3/genética , Camundongos
8.
J Opt Soc Am A Opt Image Sci Vis ; 36(8): 1334-1345, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503559

RESUMO

We introduce the basic elements of a spatio-angular theory of fluorescence microscopy, providing a unified framework for analyzing systems that image single fluorescent dipoles and ensembles of overlapping dipoles that label biological molecules. We model an aplanatic microscope imaging an ensemble of fluorescent dipoles as a linear Hilbert-space operator, and we show that the operator takes a particularly convenient form when expressed in a basis of complex exponentials and spherical harmonics-a form we call the dipole spatio-angular transfer function. We discuss the implications of our analysis for all quantitative fluorescence microscopy studies and lay out a path toward a complete theory.

9.
J Opt Soc Am A Opt Image Sci Vis ; 36(8): 1346-1360, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503560

RESUMO

We investigate the properties of a single-view fluorescence microscope in a 4f geometry when imaging fluorescent dipoles without using the monopole or scalar approximations. We show that this imaging system has a spatio-angular band limit, and we exploit the band limit to perform efficient simulations. Notably, we show that information about the out-of-plane orientation of ensembles of in-focus fluorophores is recorded by paraxial fluorescence microscopes. Additionally, we show that the monopole approximation may cause biased estimates of fluorophore concentrations, but these biases are small when the sample contains either many randomly oriented fluorophores in each resolvable volume or unconstrained rotating fluorophores.

10.
Proc Natl Acad Sci U S A ; 113(42): E6352-E6361, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27679846

RESUMO

Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells.


Assuntos
Simulação de Dinâmica Molecular , Imagem Individual de Molécula , Actinas/metabolismo , Biomarcadores , Interpretação Estatística de Dados , Polarização de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Sensibilidade e Especificidade , Septinas/metabolismo , Imagem Individual de Molécula/métodos
11.
Nature ; 481(7381): 348-51, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217941

RESUMO

From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex topologies.


Assuntos
Bacteriófago M13/química , Substituição de Aminoácidos , Bacteriófago M13/genética , Fenômenos Biomecânicos , Coloides/química , Simulação por Computador , Microscopia Eletrônica de Transmissão , Óleos/química , Estereoisomerismo , Tensão Superficial , Tensoativos/química , Água/química
13.
Opt Express ; 25(25): 31309-31325, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245807

RESUMO

We investigate the use of polarized illumination in multiview microscopes for determining the orientation of single-molecule fluorescence transition dipoles. First, we relate the orientation of single dipoles to measurable intensities in multiview microscopes and develop an information-theoretic metric-the solid-angle uncertainty-to compare the ability of multiview microscopes to estimate the orientation of single dipoles. Next, we compare a broad class of microscopes using this metric-single- and dual-view microscopes with varying illumination polarization, illumination numerical aperture (NA), detection NA, obliquity, asymmetry, and exposure. We find that multi-view microscopes can measure all dipole orientations, while the orientations measurable with single-view microscopes is halved because of symmetries in the detection process. We also find that choosing a small illumination NA and a large detection NA are good design choices, that multiview microscopes can benefit from oblique illumination and detection, and that asymmetric NA microscopes can benefit from exposure asymmetry.

14.
FASEB J ; 29(11): 4555-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26195589

RESUMO

Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Vinculina/metabolismo , Animais , Colágeno/genética , Matriz Extracelular/genética , Fibroblastos/citologia , Camundongos , Camundongos Knockout , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Vinculina/genética
15.
Opt Express ; 23(6): 7734-54, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837112

RESUMO

We have developed an imaging system for 3D time-lapse polarization microscopy of living biological samples. Polarization imaging reveals the position, alignment and orientation of submicroscopic features in label-free as well as fluorescently labeled specimens. Optical anisotropies are calculated from a series of images where the sample is illuminated by light of different polarization states. Due to the number of images necessary to collect both multiple polarization states and multiple focal planes, 3D polarization imaging is most often prohibitively slow. Our MF-PolScope system employs multifocus optics to form an instantaneous 3D image of up to 25 simultaneous focal-planes. We describe this optical system and show examples of 3D multi-focus polarization imaging of biological samples, including a protein assembly study in budding yeast cells.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Polarização/métodos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Escherichia coli/citologia , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Saccharomyces cerevisiae/citologia , Imagem com Lapso de Tempo
16.
Mol Reprod Dev ; 82(7-8): 548-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-23901032

RESUMO

The polarized light microscope reveals orientational order in native molecular structures inside living cells, tissues, and whole organisms. It is a powerful tool used to monitor and analyze the early developmental stages of organisms that lend themselves to microscopic observations. In this article, we briefly discuss the components specific to a traditional polarizing microscope and some historically important observations on: chromosome packing in the sperm head, the first zygote division of the sea urchin, and differentiation initiated by the first asymmetric cell division in the sand dollar. We then introduce the LC-PolScope and describe its use for measuring birefringence and polarized fluorescence in living cells and tissues. Applications range from the enucleation of mouse oocytes to analyzing the polarized fluorescence of the water strider acrosome. We end with new results on the birefringence of the developing chick brain, which we analyzed between developmental stages of days 12-20.


Assuntos
Embriologia/instrumentação , Embriologia/métodos , Animais , Divisão Celular , Masculino , Camundongos , Microscopia de Polarização , Cabeça do Espermatozoide/metabolismo , Zigoto/citologia , Zigoto/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(10): 4152-7, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21325608

RESUMO

Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.


Assuntos
Hibridização in Situ Fluorescente/métodos , Microbiologia
18.
Cytoskeleton (Hoboken) ; 81(2-3): 167-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37812128

RESUMO

Time-lapse imaging with liquid crystal polarized light (LC-PolScope) and fluorescent speckle microscopy (FSM) enabled this study of spindle microtubules in monoastral spindles that were produced in crane-fly spermatocytes through flattening-induced centrosome displacement. Monoastral spindles are found in several other contexts: after laser ablation of one of a cell's two centrosomes (in the work of Khodjakov et al.), in Drosophila "urchin" mutants (in the works of Heck et al. and of Wilson et al.), in Sciara males (in the works of Fuge and of Metz), and in RNAi variants of Drosophila S2 cells (in the work of Goshima et al.). In all cases, just one pole has a centrosome (the astral pole); the other lacks a centrosome (the anastral pole). Thus, the question: How is the anastral half-spindle, lacking a centrosome, constructed? We learned that monoastral spindles are assembled in two phases: Phase I assembles the astral half-spindle composed of centrosomal microtubules, and Phase II assembles microtubules of the anastral half through extension of new microtubule polymerization outward from the spindle's equatorial mid-zone. That process uses plus ends of existing centrosomal microtubules as guiding templates to assemble anastral microtubules of opposite polarity. Anastral microtubules slide outward with their minus ends leading, thereby establishing proper bipolarity just like in normal biastral spindles that have two centrosomes.


Assuntos
Proteínas de Drosophila , Fuso Acromático , Animais , Masculino , Microtúbulos , Centrossomo , Drosophila , Proteínas de Drosophila/genética
19.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260704

RESUMO

Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a novel method to apply forces to the nucleus of living, wild-type Caenorhabditis elegans embryos to measure the force generated inside the cell. We utilized a centrifuge polarizing microscope (CPM) to apply centrifugal force and orientation-independent differential interference contrast (OI-DIC) microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~14 pN/µm depending on the distance from the center. The frictional coefficient was ~1,100 pN s/µm. The measured values were smaller than previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. Frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.

20.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38712306

RESUMO

Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa