Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(3): 460-7, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25517403

RESUMO

We report the coupling of a flash pyrolysis molecular beam source with nonresonant strong-field ionization in a time-of-flight mass spectrometer. The saturation laser intensities at which ionization occurs for the various product species are generally found to correlate closely with the ionization energies, as has been seen for closed-shell molecules. It is then possible to use this correlation to identify the product and quantify isomers from among several candidate species whose ionization energies are known. The approach is analogous to using tunable vacuum ultraviolet ionization to identify reaction products.

2.
Phys Chem Chem Phys ; 16(30): 15739-15751, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756159

RESUMO

A Chirped-Pulse millimeter-Wave (CPmmW) spectrometer is applied to the study of chemical reaction products that result from pyrolysis in a Chen nozzle heated to 1000-1800 K. Millimeter-wave rotational spectroscopy unambiguously determines, for each polar reaction product, the species, the conformers, relative concentrations, conversion percentage from precursor to each product, and, in some cases, vibrational state population distributions. A chirped-pulse spectrometer can, within the frequency range of a single chirp, sample spectral regions of up to ∼10 GHz and simultaneously detect many reaction products. Here we introduce a modification to the CPmmW technique in which multiple chirps of different spectral content are applied to a molecular beam pulse that contains the pyrolysis reaction products. This technique allows for controlled allocation of its sensitivity to specific molecular transitions and effectively doubles the bandwidth of the spectrometer. As an example, the pyrolysis reaction of ethyl nitrite, CH3CH2ONO, is studied, and CH3CHO, H2CO, and HNO products are simultaneously observed and quantified, exploiting the multi-chirp CPmmW technique. Rotational and vibrational temperatures of some product molecules are determined. Subsequent to supersonic expansion from the heated nozzle, acetaldehyde molecules display a rotational temperature of 4 ± 1 K. Vibrational temperatures are found to be controlled by the collisional cooling in the expansion, and to be both species- and vibrational mode-dependent. Rotational transitions of vibrationally excited formaldehyde in levels ν4, 2ν4, 3ν4, ν2, ν3, and ν6 are observed and effective vibrational temperatures for modes 2, 3, 4, and 6 are determined and discussed.

3.
J Chem Phys ; 141(15): 154202, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338889

RESUMO

We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

4.
J Chem Phys ; 141(21): 214203, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481137

RESUMO

This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the µs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

5.
J Chem Phys ; 133(19): 194302, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090857

RESUMO

Rate constants for chemical reactions of laser-cooled Ca(+) ions and neutral polar molecules (CH(3)F, CH(2)F(2), or CH(3)Cl) have been measured at low collision energies (/k(B)=5-243 K). Low kinetic energy ensembles of (40)Ca(+) ions are prepared through Doppler laser cooling to form "Coulomb crystals" in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca(+) ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of (40)Ca(+) involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ((2)S(1/2)) and the combined excited states ((2)D(3/2) and (2)P(1/2)) of (40)Ca(+). These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

6.
Rev Sci Instrum ; 85(11): 116107, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430156

RESUMO

Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 µs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 µs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.

7.
J Phys Chem Lett ; 5(21): 3641-8, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278732

RESUMO

Chirped-pulse (CP) Fourier transform rotational spectroscopy is uniquely suited for near-universal quantitative detection and structural characterization of mixtures that contain multiple molecular and radical species. In this work, we employ CP spectroscopy to measure product branching and extract information about the reaction mechanism, guided by kinetic modeling. Pyrolysis of ethyl nitrite, CH3CH2ONO, is studied in a Chen type flash pyrolysis reactor at temperatures of 1000-1800 K. The branching between HNO, CH2O, and CH3CHO products is measured and compared to the kinetic models generated by the Reaction Mechanism Generator software. We find that roaming CH3CH2ONO → CH3CHO + HNO plays an important role in the thermal decomposition of ethyl nitrite, with its rate, at 1000 K, comparable to that of the radical elimination channel CH3CH2ONO → CH3CH2O + NO. HNO is a signature of roaming in this system.

8.
Faraday Discuss ; 142: 73-91; discussion 93-111, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20151539

RESUMO

The recent development of a range of techniques for producing cold atoms and molecules at very low translational temperatures T < or = 1 K has provided the opportunity to investigate collisional processes in a new physical regime. We have recently presented a new experimental method to study low-temperature reactive collisions between translationally cold ions and neutral molecules (S. Willitsch et al., Phys. Rev. Lett. 2008, 100, 043203). Our technique relies on the combination of a quadrupole-guide velocity selector for the generation of translationally cold neutral molecules with a facility to produce ordered structures of cold ions (Coulomb crystals) by laser cooling in a linear quadrupole ion trap. The strong localisation of the ions in the trap in combination with the high sensitivity of laser-induced-fluorescence detection enabled us to study chemical reactions on the single-particle level, down to temperatures of T approximately 1 K. In the current paper, we present a detailed characterisation of the scope and limitations of this method based on our study of the reaction between laser-cooled Ca+ ions and velocity-selected CH3F molecules. The properties of our cold-neutrals source and the dependence of the measured rate constant on the shape of the Coulomb crystals, trapping and laser-cooling parameters are discussed. An extension of our technique for the study of low-temperature reactions with sympathetically cooled molecular ions (translational temperature T > 10 mK) is presented and first results on the charge-transfer reaction between OCS+ and ND3 are discussed. Finally, perspectives for further developments of our method are explored.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa