Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 582(7810): 104-108, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427965

RESUMO

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Assuntos
Apoptose/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Parasitos/imunologia , Plasmodium falciparum/citologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Aotidae/imunologia , Aotidae/parasitologia , Caspases/metabolismo , Criança , Estudos de Coortes , DNA de Protozoário/química , DNA de Protozoário/metabolismo , Ativação Enzimática , Eritrócitos/parasitologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Quênia , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Parasitos/citologia , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Tanzânia , Trofozoítos/citologia , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/imunologia , Vacúolos/imunologia
2.
J Infect Dis ; 229(1): 203-213, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804095

RESUMO

Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are important targets for protective immunity. Abnormal display of PfEMP1 on the surfaces of infected erythrocytes (IEs) and reduced cytoadhesion have been demonstrated in hemoglobin (Hb) AS and HbAC, inherited blood disorders associated with protection against severe P. falciparum malaria. We found that Ghanaian children with HbAS had lower levels of immunoglobulin G against several PfEMP1 variants and that this reactivity increased more slowly with age than in their HbAA counterparts. Moreover, children with HbAS have lower total parasite biomass than those with HbAA at comparable peripheral parasitemias, suggesting impaired cytoadhesion of HbAS IEs in vivo and likely explaining the slower acquisition of PfEMP1-specific immunoglobulin G in this group. In contrast, the function of acquired antibodies was comparable among Hb groups and appears to be intact and sufficient to control parasitemia via opsonization and phagocytosis of IEs.


Assuntos
Hemoglobina Falciforme , Malária Falciparum , Criança , Humanos , Hemoglobina Falciforme/metabolismo , Plasmodium falciparum , Malária Falciparum/parasitologia , Gana , Proteínas de Protozoários , Eritrócitos/parasitologia , Imunoglobulina G , Anticorpos Antiprotozoários , Proteínas de Membrana/metabolismo
3.
Langmuir ; 39(49): 17770-17781, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039387

RESUMO

Applications of nanoparticles (NPs) in nanodrugs, food additives, and cosmetics can result in the presence of nanomaterials in the human circulatory system and their attachment to red blood cells (RBCs), which may lead to cytotoxic effects. To investigate the interactions of NPs with RBC membranes (RBCm), supported erythrocyte membranes (SRBCm) were developed on piezoelectric sensors in a quartz crystal microbalance with dissipation (QCM-D) at 25 °C. A well-dispersed RBCm suspension at 1 mM NaCl and 0.2 mM NaHCO3 was obtained from whole blood and comprised colloidal membrane fragments with the average hydrodynamic diameter and zeta potential of 390 nm and -0.53 mV, respectively, at pH 7.0. The thin and rigid SRBCm was formed mainly through the deposition of RBCm fragments on the poly-l-lysine-modified crystal sensor, leading to the average frequency shift of -26.2 Hz and the low ratio of the dissipation to frequency shift (7.2 × 10-8 Hz-1). The complete coverage of SRBCm was indicated by the plateau of the frequency shift in the stage of SRBCm formation and no deposition of negatively charged 106 nm polystyrene nanoparticles (PSNPs) on the SRBCm. Atomic force microscopy and immunofluorescence microscopy images showed that RBCm aggregates with the average size of 420 nm and erythrocyte membrane proteins existed on SRBCm, respectively. The methods of determining attachment efficiencies of model positively charged NPs (i.e., hematite NPs or HemNPs) and model negatively charged NPs (i.e., PSNPs) on SRBCm were demonstrated in 1 mM NaCl solution at pH 5.1 and pH 7.0, respectively. HemNPs exhibited a favorable deposition with an attachment efficiency of 0.99 while PSNPs did not show any attachment propensity toward SRBCm.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Cloreto de Sódio , Nanopartículas/química , Membrana Eritrocítica , Técnicas de Microbalança de Cristal de Quartzo
4.
J Infect Dis ; 225(11): 2011-2022, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718641

RESUMO

BACKGROUND: Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. METHODS: In this study, we characterize an invariant protein associated with PM called P falciparum chondroitin sulfate A ligand (PfCSA-L). RESULTS: Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and it is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high-affinity protein-protein interactions with VAR2CSA. This suggests that iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. CONCLUSIONS: The PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Sulfatos de Condroitina , Eritrócitos/parasitologia , Feminino , Humanos , Malária/prevenção & controle , Malária Falciparum/parasitologia , Placenta/parasitologia , Plasmodium falciparum , Gravidez
5.
Biochemistry (Mosc) ; 87(Suppl 1): S192-S177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35501996

RESUMO

Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.


Assuntos
Malária Falciparum , Parasitos , Animais , Descoberta de Drogas , Eritrócitos , Feminino , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Placenta , Plasmodium falciparum , Gravidez
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073419

RESUMO

Specific adhesion of P. falciparum parasite-infected erythrocytes (IE) in deep vascular beds can result in severe complications, such as cerebral malaria, placental malaria, respiratory distress, and severe anemia. Cerebral malaria and severe malaria syndromes were associated previously with sequestration of IE to a microvasculature receptor ICAM-1. The screening of Torrey Pines Scaffold Ranking library, which consists of more than 30 million compounds designed around 75 molecular scaffolds, identified small molecules that inhibit cytoadhesion of ICAM-1-binding IE to surface-immobilized receptor at IC50 range down to ~350 nM. With their low cytotoxicity toward erythrocytes and human endothelial cells, these molecules might be suitable for development into potentially effective adjunct anti-adhesion drugs to treat cerebral and/or severe malaria syndromes. Our two-step high-throughput screening approach is specifically designed to work with compound mixtures to make screening and deconvolution to single active compounds fast and efficient.


Assuntos
Antimaláricos , Eritrócitos , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequenas , Antimaláricos/química , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Anal Bioanal Chem ; 412(16): 3915-3923, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31989195

RESUMO

Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) is responsible for the pathophysiology of placental malaria, leading to serious complications such as intrauterine growth restriction and low birth weight. However, it is an experimental challenge to study the biology of human placenta. Conventional cell culture-based in vitro placental models rely on immunostaining techniques and high-magnification microscopy is limited in providing real-time quantitative analysis. Impedimetric sensing in combination with cell culture may offer a useful tool. In this paper, we report that real-time label-free measurement of cellular electrical impedance using xCELLigence technology can be used to quantify the proliferation, syncytial fusion, and long-term response of BeWo cells to IEs cytoadhesion. Specifically, we optimized key experimental parameters of cell seeding density and concentration of forskolin, a compound used to promote cell syncitiation, based on electrical signals and immunostaining results. Prolonged time of infection with IEs that led to cell-cell junction vanishment in BeWo cells and release of inflammatory cytokines were monitored in real time by continuous change in electrical impedance. The results suggest that the impedimetric technique is sensitive and can offer new opportunities for the study of cellular responses of trophoblast cells to IEs. The developed system can provide potentially a high-throughput screening tool of anti-adhesion or anti-inflammatory drugs for placental malaria infections.


Assuntos
Eritrócitos/patologia , Malária Falciparum/patologia , Complicações Parasitárias na Gravidez/patologia , Trofoblastos/patologia , Linhagem Celular , Feminino , Humanos , Técnicas In Vitro , Malária Falciparum/complicações , Gravidez
8.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228194

RESUMO

The human placenta plays a key role in reproduction and serves as a major interface for maternofetal exchange of nutrients. Study of human placenta pathology presents a great experimental challenge because it is not easily accessible. In this paper, a 3D placenta-on-a-chip model is developed by bioengineering techniques to simulate the placental interface between maternal and fetal blood in vitro. In this model, trophoblasts cells and human umbilical vein endothelial cells are cultured on the opposite sides of a porous polycarbonate membrane, which is sandwiched between two microfluidic channels. Glucose diffusion across this barrier is analyzed under shear flow conditions. Meanwhile, a numerical model of the 3D placenta-on-a-chip model is developed. Numerical results of concentration distributions and the convection-diffusion mass transport is compared to the results obtained from the experiments for validation. Finally, effects of flow rate and membrane porosity on glucose diffusion across the placental barrier are studied using the validated numerical model. The placental model developed here provides a potentially helpful tool to study a variety of other processes at the maternal-fetal interface, for example, effects of drugs or infections like malaria on transport of various substances across the placental barrier.


Assuntos
Técnicas de Cocultura , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Trofoblastos/metabolismo , Transporte Biológico , Difusão , Feminino , Feto , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Cinética , Troca Materno-Fetal/fisiologia , Membranas Artificiais , Placenta/citologia , Placenta/metabolismo , Porosidade , Gravidez , Reologia , Trofoblastos/citologia
9.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784862

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLß domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLß3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLß3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLß3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLß sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLß domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Biomarcadores/sangue , Malária Falciparum/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/genética , Pré-Escolar , Receptor de Proteína C Endotelial/metabolismo , Feminino , Seguimentos , Variação Genética , Humanos , Incidência , Lactente , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/epidemiologia , Malária Falciparum/patologia , Masculino , Papua Nova Guiné/epidemiologia , Filogenia , Ligação Proteica , Domínios Proteicos/imunologia , Proteínas de Protozoários/genética , Medição de Risco
10.
J Infect Dis ; 211(7): 1134-43, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355939

RESUMO

BACKGROUND: We developed a 2-step approach to screen molecules that prevent and/or reverse Plasmodium falciparum-infected erythrocyte (IE) binding to host receptors. IE adhesion and sequestration in vasculature causes severe malaria, and therefore antiadhesion therapy might be useful as adjunctive treatment. IE adhesion is mediated by the polymorphic family (approximately 60 members) of P. falciparum EMP1 (PfEMP1) multidomain proteins. METHODS: We constructed sets of PfEMP1 domains that bind ICAM-1, CSA, or CD36, receptors that commonly support IE binding. Combinations of domain-coated beads were assayed by Bio-Plex technology as a high-throughput molecular platform to screen antiadhesion molecules (antibodies and small molecules). Molecules identified as so-called hits in the screen (first step) then could be assayed individually for inhibition of binding of live IE to receptors (second step). RESULTS: In proof-of-principle studies, the antiadhesion activity of several antibodies was concordant in Bio-Plex and live IE assays. Using this 2-step approach, we identified several molecules in a small molecule library of 10 000 compounds that could inhibit and reverse binding of IEs to ICAM-1 and CSA receptors. CONCLUSION: This 2-step screening approach should be efficient for identification of antiadhesion drug candidates for falciparum malaria.


Assuntos
Moléculas de Adesão Celular/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Antígenos CD36/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Linhagem Celular , Eritrócitos/imunologia , Eritrócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Bibliotecas de Moléculas Pequenas
11.
Malar J ; 14: 425, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26515752

RESUMO

BACKGROUND: Malaria caused by Plasmodium falciparum is the most virulent form of malaria, leading to approximately a half million deaths per year. Chemotherapy continues to be a key approach in malaria prevention and treatment. Due to widespread parasite drug resistance, identification and development of new anti-malarial compounds remains an important task of malarial parasitology. The semi-synthetic drug amitozyn, obtained through alkylation of major celandine (Chelidonium majus) alkaloids with N,N'N'-triethylenethiophosphoramide (ThioTEPA), is a widely used Eastern European folk medicine for the treatment of various tumours. However, its anti-malarial effect has never been studied. METHODS: The anti-malarial effects of amitozyn alone and in combination with chloroquine, pyrimethamine and artemisinin on the blood stages of P. falciparum were analysed. The cytostatic effects of amitozyn on parasites and various cancerous and non-cancerous human cells were compared and their toxic effects on unparasitized human red blood cells were analysed. RESULTS: Obtained results demonstrate that amitozyn effectively inhibits the growth of blood-stage parasites with IC50 9.6 ± 2, 11.3 ± 2.8 and 10.8 ± 1.8 µg/mL using CS2, 3G8 and NF54 parasite lines, respectively. The median IC50 for 14 tested human cell lines was 33-152 µg/mL. Treatment of uninfected red blood cells with a high dose of amitozyn (500 µg/mL) did not change cell morphology, demonstrating its non-toxicity for erythrocytes. The synergistic impact of the amitozyn/chloroquine combination was observed at growth inhibition levels of 10-80 %, while demonstrating a nearly additive effect at a growth inhibition level of 90 %. The combination of amitozyn with pyrimethamine has a synergistic effect at growth inhibition levels of 10-70 % and a nearly additive effect at a growth inhibition level of 90 %. The synergistic anti-malarial effect of the amitozyn/artemisinin combination was observed at growth inhibition levels of 10-40 % and a nearly additive effect at growth inhibition levels of 50-90 %. CONCLUSIONS: These in vitro results suggest that the semi-synthetic drug amitozyn, typically used for the treatment of tumours, is a potential anti-malarial candidate and warrants more detailed laboratory and pre-clinical investigations.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chelidonium/química , Interações Medicamentosas , Eritrócitos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária
12.
Infect Immun ; 81(4): 1031-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23319559

RESUMO

Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4ε, DBL5ε, DBL6ε, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4ε and to DBL5ε inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4ε and DBL5ε as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Sulfatos de Condroitina/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Placenta/parasitologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Adesão Celular , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Escherichia coli/genética , Feminino , Expressão Gênica , Humanos , Recém-Nascido , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Gravidez , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
13.
Infect Immun ; 81(2): 487-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208604

RESUMO

Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes that adhere to the placental receptor chondroitin sulfate A (CSA) and sequester in the placenta; women become resistant to pregnancy malaria as they acquire antiadhesion antibodies that target surface proteins of placental parasites. VAR2CSA, a member of the P. falciparum EMP1 variant surface antigen family, is the leading candidate for a pregnancy malaria vaccine. Because VAR2CSA is a high-molecular-weight protein, a vaccine based on the full-length protein may not be feasible. An alternative approach has been to develop a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic systems, as did the two allelic forms of the DBL4 and DBL5 domains. The procedures developed for this head-to-head comparison will be useful for future evaluation and down-selection of malaria vaccine immunogens.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Plasmodium falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Animais , Sulfatos de Condroitina/imunologia , Estudos de Coortes , Feminino , Humanos , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Estudos Longitudinais , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Gravidez , Complicações Parasitárias na Gravidez/prevenção & controle , Ratos , Proteínas Recombinantes/imunologia
14.
Methods Mol Biol ; 2470: 327-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881356

RESUMO

Identification of P. falciparum infected erythrocyte surface ligands (such as PfEMP1) matched with the host receptors they interact with, as well as identification of PfEMP1 domains that are targets of protective immunity, are important for understanding of the pathophysiology of severe malaria (SM) and for design of novel vaccine candidates. In addition, identification of small-molecule drugs that can prevent or reverse receptor-ligand domain interactions could provide new tools for adjunctive therapy in SM. This protocol describes how to prepare functionally intact PfEMP1 proteins in mammalian cells (COS-7) and immobilize them on the surface of BioPlex beads. Furthermore, the protocol described how to identify PfEMP1 constructs that bind to specific host receptors or to immunoglobulins (IgG, IgM, etc.), and how to measure inhibition of the receptor binding to PfEMP1 constructs by small-molecule compounds or serum/plasma.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Humanos , Ligantes , Mamíferos/metabolismo , Plasmodium falciparum/metabolismo , Polímeros , Proteínas de Protozoários/metabolismo
15.
PLoS Pathog ; 5(4): e1000386, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19381252

RESUMO

Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521) best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521) binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521) and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Adulto , Sequência de Aminoácidos , Animais , Pré-Escolar , Membrana Eritrocítica/imunologia , Humanos , Lactente , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas de Membrana/imunologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
16.
J Proteomics ; 234: 104083, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33373718

RESUMO

Using high-throughput BioPlex assays, we determined that six fractions from the venom of Conus nux inhibit the adhesion of various recombinant PfEMP-1 protein domains (PF08_0106 CIDR1α3.1, PF11_0521 DBL2ß3, and PFL0030c DBL3X and DBL5e) to their corresponding receptors (CD36, ICAM-1, and CSA, respectively). The protein domain-receptor interactions permit P. falciparum-infected erythrocytes (IE) to evade elimination in the spleen by adhering to the microvasculature in various organs including the placenta. The sequences for the main components of the fractions, determined by tandem mass spectrometry, yielded four T-superfamily conotoxins, one (CC-Loop-CC) with I-IV, II-III connectivity and three (CC-Loop-CXaaC) with a I-III, II-IV connectivity. The 3D structure for one of the latter, NuxVA = GCCPAPLTCHCVIY, revealed a novel scaffold defined by double turns forming a hairpin-like structure stabilized by the two disulfide bonds. Two other main fraction components were a miniM conotoxin, and a O2-superfamily conotoxin with cysteine framework VI/VII. This study is the first one of its kind suggesting the use of conotoxins for developing pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as inhibitors of protein-protein interactions as treatment. BIOLOGICAL SIGNIFICANCE: Among the 850+ species of cone snail species there are hundreds of thousands of diverse venom exopeptides that have been selected throughout several million years of evolution to capture prey and deter predators. They do so by targeting several surface proteins present in target excitable cells. This immense biomolecular library of conopeptides can be explored for potential use as therapeutic leads against persistent and emerging diseases affecting non-excitable systems. We aim to expand the pharmacological reach of conotoxins/conopeptides by revealing their in vitro capacity to disrupt protein-protein and protein-polysaccharide interactions that directly contribute to pathology of Plasmodium falciparum malaria. This is significant for severe forms of malaria, which might be deadly even after treated with current parasite-killing drugs because of persistent cytoadhesion of P. falciparum infected erythrocytes even when parasites within red blood cells are dead. Anti-adhesion adjunct drugs would de-sequester or prevent additional sequestration of infected erythrocytes and may significantly improve survival of malaria patients. These results provide a lead for further investigations into conotoxins and other venom peptides as potential candidates for anti-adhesion or blockade-therapies. This study is the first of its kind and it suggests that conotoxins can be developed as pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as potential inhibitors of protein-protein interactions as treatment.


Assuntos
Antígenos CD36 , Enzimas Reparadoras do DNA , Eritrócitos , Molécula 1 de Adesão Intercelular , Venenos de Moluscos , Plasmodium falciparum , Fatores de Transcrição , Animais , Antígenos CD36/química , Antígenos CD36/metabolismo , COVID-19 , Caramujo Conus , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Venenos de Moluscos/química , Venenos de Moluscos/farmacologia , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Domínios Proteicos , Proteínas de Protozoários , SARS-CoV-2 , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 11(1): 3680, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574457

RESUMO

The Plasmodium falciparum erythrocyte-membrane-protein-1 (PF3D7_1150400/PF11_0521) contains both domain cassette DC13 and DBLß3 domain binding to EPCR and ICAM-1 receptors, respectively. This type of PfEMP1 proteins with dual binding specificity mediate specific interactions with brain micro-vessels endothelium leading to the development of cerebral malaria (CM). Using plasma collected from children at time of hospital admission and after 30 days, we study an acquisition of IgG response to PF3D7_1150400/PF11_0521 DC13 and DBLß3_D4 recombinant constructs, and five peptides located within these constructs, specifically in DBLα1.7_D2 and DBLß3_D4 domains. We found significant IgG responses against the entire DC13, PF11_0521_DBLß3_D4 domain, and peptides. The responses varied against different peptides and depended on the clinical status of children. The response was stronger at day 30, and mostly did not differ between CM and uncomplicated malaria (UM) groups. Specifically, the DBLß3 B3-34 peptide that contains essential residues involved in the interaction between PF11_0521 DBLß3_D4 domain and ICAM-1 receptor demonstrated significant increase in reactivity to IgG1 and IgG3 antibodies at convalescence. Further, IgG reactivity in CM group at time of admission against functionally active (ICAM-1-binding) PF11_0521 DBLß3_D4 domain was associated with protection against severe anemia. These results support development of vaccine based on the PF3D7_1150400/PF11_0521 structures to prevent CM.


Assuntos
Imunoglobulina G/sangue , Malária Cerebral/imunologia , Malária Falciparum/imunologia , Peptídeos/imunologia , Proteínas de Protozoários/imunologia , Anemia/complicações , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Pré-Escolar , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/parasitologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunoglobulina G/imunologia , Lactente , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Malária Cerebral/sangue , Malária Cerebral/genética , Malária Cerebral/parasitologia , Malária Falciparum/sangue , Malária Falciparum/genética , Malária Falciparum/parasitologia , Masculino , Peptídeos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica/genética , Ligação Proteica/imunologia , Proteínas de Protozoários/genética
18.
Transl Res ; 213: 23-49, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31170377

RESUMO

Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.


Assuntos
Técnicas Biossensoriais/tendências , Doenças Placentárias/diagnóstico , Bioengenharia , Biomarcadores/metabolismo , Feminino , Humanos , Invenções , Sistemas Automatizados de Assistência Junto ao Leito , Gravidez
19.
Sci Rep ; 9(1): 2901, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814636

RESUMO

Tandem Oligonucleotide Repeat Cascade Amplification (TORCA) based on signal rather than target amplification under isothermal conditions was developed for nucleic acid assays. The initial signal was generated by hybridization of single stranded DNA targets to immobilized recognition probes followed by hybrid cleavage with specific restriction endonuclease (REase), and release of trigger oligonucleotides (Tr1). The signal amplification chamber contained two bead types carrying single-stranded amplification probes and two amplification REases. The probes consisted of multiple tandem repeats of either Tr1 or another trigger Tr2, with the tandem-Tr1 anchored to the beads through the antisense Tr2 linker and vice versa. Addition of the recognition reaction solution and Tr1 hybridization to the anti-Tr1 linkers started cleavage and release of additional Tr1 and Tr2, resulting in exponential signal amplification. The cleavage cascade also released horseradish peroxidase (HRP) pre-attached to the amplification probes, and the resultant signal was measured colorimetrically. A TORCA assay was developed for detection of Plasmodium falciparum parasites in blood. It had the detection limit in the attomolar concentration range, successfully detecting sub-microscopic P. falciparum infections at less than 0.75 infected erythrocytes per microliter. Further TORCA optimization will likely produce the quantitative isothermal alternative to PCR at a fraction of its cost.


Assuntos
Sangue/parasitologia , Eritrócitos/parasitologia , Malária Falciparum/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Eritrócitos/patologia , Humanos , Limite de Detecção , Microscopia , Técnicas de Diagnóstico Molecular , Sequências de Repetição em Tandem/genética
20.
Sci Rep ; 9(1): 6050, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988351

RESUMO

PfEMP1 is a family of adhesive proteins expressed on the surface of Plasmodium falciparum-infected erythrocytes (IEs), where they mediate adhesion of IEs to a range of host receptors. Efficient PfEMP1-dependent IE sequestration often depends on soluble serum proteins, including IgM. Here, we report a comprehensive investigation of which of the about 60 var gene-encoded PfEMP1 variants per parasite genome can bind IgM via the Fc part of the antibody molecule, and which of the constituent domains of those PfEMP1 are involved. We erased the epigenetic memory of var gene expression in three distinct P. falciparum clones, 3D7, HB3, and IT4/FCR3 by promoter titration, and then isolated individual IEs binding IgM from malaria-unexposed individuals by fluorescence-activated single-cell sorting. The var gene transcription profiles of sub-clones measured by real-time qPCR were used to identify potential IgM-binding PfEMP1 variants. Recombinant DBL and CIDR domains corresponding to those variants were tested by ELISA and protein arrays to confirm their IgM-binding capacity. Selected DBL domains were used to raise specific rat anti-sera to select IEs with uniform expression of candidate PfEMP1 proteins. Our data document that IgM-binding PfEMP1 proteins are common in each of the three clones studied, and that the binding epitopes are mainly found in DBLε and DBLζ domains near the C-terminus.


Assuntos
Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/metabolismo , Imunoglobulina M/metabolismo , Malária Falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genes de Protozoários/genética , Variação Genética/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina M/imunologia , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa