Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acta Neurochir (Wien) ; 162(3): 581-592, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940093

RESUMO

BACKGROUND: The main objective of this study was to generate a hemodynamically stable swine model to detect spreading depolarizations (SDs) using electrocorticography (ECoG) and intrinsic optical signal (IOS) imaging and laser speckle flowmetry (LSF) after a 30-h middle cerebral artery (MCA) occlusion (MCAo) in German Landrace Swine. METHODS: A total of 21 swine were used. The study comprised a training group (group 1, n = 7), a group that underwent bilateral craniectomy and MCAo (group 2, n = 10) and a group used for 2,3,5-triphenyltetrazolium (TTC) staining (group 3, n = 5). RESULTS: In group 2, nine animals that underwent MCAo survived for 30 h, and one animal survived for 12 h. We detected MCA variants with 2 to 4 vessels. In all cases, all of the MCAs were occluded. The intensity changes exhibited by IOS and LSF after clipping were closely correlated and indicated a lower blood volume and reduced blood flow in the middle cerebral artery territory. Using IOS, we detected a mean of 2.37 ± (STD) 2.35 SDs/h. Using ECoG, we detected a mean of 0.29 ± (STD) 0.53 SDs/h. Infarctions were diagnosed using histological analysis. TTC staining in group 3 confirmed that the MCA territory was compromised and that the anterior and posterior cerebral arteries were preserved. CONCLUSIONS: We confirm the reliability of performing live monitoring of cerebral infarctions using our MCAo protocol to detect SDs.


Assuntos
Eletrocorticografia/métodos , Infarto da Artéria Cerebral Média/fisiopatologia , Animais , Circulação Cerebrovascular , Masculino , Potenciais da Membrana , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiopatologia , Imagem Óptica/métodos , Suínos
2.
Crit Care ; 23(1): 427, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888772

RESUMO

OBJECTIVE: Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-D-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. METHODS: We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. RESULTS: S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient - 1.83 (95% confidence intervals - 2.17; - 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1-2.0 mg/kg BW/h) and high-dose (2.1-7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, - 1.10 (- 1.71; - 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. CONCLUSIONS: These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.


Assuntos
Ketamina/farmacologia , N-Metilaspartato/antagonistas & inibidores , Hemorragia Subaracnóidea/tratamento farmacológico , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Ketamina/uso terapêutico , Tempo de Internação/estatística & dados numéricos , Masculino , Midazolam/farmacologia , Midazolam/uso terapêutico , Pessoa de Meia-Idade , Fármacos Neuromusculares Despolarizantes/farmacologia , Fármacos Neuromusculares Despolarizantes/uso terapêutico , Razão de Chances , Estudos Retrospectivos , Hemorragia Subaracnóidea/fisiopatologia
3.
Acta Neurochir (Wien) ; 161(5): 911-916, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852674

RESUMO

BACKGROUND: Spreading depolarization (SD) is a fundamental pathophysiological mechanism of both pannecrotic and selective neuronal lesions following deprivation of energy. SD with brain injury has been reported including in one patient during an intracranial operation. However, the incidence of SDs in operative resections is unknown. METHODS: We performed (a) retrospective analysis of intraoperative AC-recordings of 69 patients and (b) a prospective study using intraoperative near-DC recording. All patients had the diagnosis of pharmaco-resistant epilepsy. Both studies were designed to determine the incidence and characteristics of SDs intraoperatively. In the retrospective analysis, we used intraoperative electrocorticography (iECoG) recordings obtained from AC-recording of 69 patients. In the prospective analysis, we used an Octal Bio Amp and Power Lab ECoG recorder with near-DC range. RESULTS: In the retrospective study, we included 69 patients with a mean of 1 h 3 min of iECoG recordings. In the prospective study, we recruited 20 patients with near DC recordings. A total of 35 h 41 min of iECoG recordings with mean of 2 h 32 min/patient were analyzed. We did not find SD in either study. CONCLUSIONS: SDs were not detected during intraoperative recordings of epilepsy surgery using AC- or DC-amplifiers.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia/cirurgia , Complicações Intraoperatórias/fisiopatologia , Procedimentos Neurocirúrgicos/efeitos adversos , Adulto , Eletrocorticografia , Feminino , Humanos , Complicações Intraoperatórias/diagnóstico , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa