Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 82(5): 630-638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36737106

RESUMO

OBJECTIVE: Neutrophil infiltration into the synovial joint is a hallmark of rheumatoid arthritis (RA), a disease characterised by progressive bone erosion. However, the mechanisms by which neutrophils participate in bone destruction remain unclear. Carbamylation is a posttranslational modification linked to increased bone erosion in RA and we previously showed that carbamylation is present in RA neutrophil extracellular traps (NETs). However, it remains unclear whether NETs and their carbamylated protein cargo directly promote bone destruction and alter osteoclast biology. METHODS: NETs and carbamylated NETs (cNETs) were assessed for their capacity to induce osteoclast formation in CD14+ monocytes. Chemical inhibitors and neutralising antibodies were used to elucidate the pathway by which NETs induce osteoclastogenesis. HLA-DRB1*04:01 mice received intra-articular injection of cNETs for 4 weeks. Joints were isolated and assessed for osteoclast formation. Plasma and synovial fluid samples from patients with RA (n=32) were assessed for the presence of carbamylated histone, and correlations to disease specific outcomes were performed. RESULTS: We found that NETs, when cNETs, instruct monocytes to undergo rapid osteoclast formation. NET-mediated osteoclastogenesis appears to depend on Toll-like receptor 4 signalling and NET-associated proteins including histones and neutrophil elastase. In vivo, we identified that the number of osteoclasts increased following immunisation with cNETs in HLA-DRB1*04:01 transgenic mice. Furthermore, carbamylated histones are increased in plasma and synovial fluid from patients with RA and correlate with active bone resorption and inflammatory markers. CONCLUSIONS: Our results suggest that NETs have a direct role in RA-associated bone erosion by promoting osteoclast formation.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Camundongos , Animais , Histonas , Osteoclastos , Armadilhas Extracelulares/metabolismo , Carbamilação de Proteínas
2.
J Invest Dermatol ; 143(1): 57-66, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934056

RESUMO

Hidradenitis suppurativa (HS) is a debilitating inflammatory skin disorder characterized by abscess-like nodules and boils resulting in fistulas and tissue scarring. We previously reported evidence of an autoimmune signature in HS, characterized by enhanced neutrophil extracellular trap (NET) infiltration in HS skin lesions and dysregulation of the adaptive immune system characterized by the presence of autoantibodies. Timely removal of NETs is critical for tissue homeostasis to prevent a dysregulated generation of modified autoantigens and tissue damage. DNases 1 and 1L3 play important roles in proper NET removal. We tested the hypothesis that NETs in patients with HS are not effectively cleared owing to the presence of antibodies against DNase 1 and DNase 1L3. We report that HS serum poorly degraded NETs. Addition of exogenous DNase 1 restored NET degradation capabilities in a subset of HS samples. DNase 1 activity was significantly decreased in HS sera. Anti‒DNase 1 and ‒DNase 1L3 antibodies were detected in serum samples and skin lesions from patients with HS. Purified IgGs from HS decreased DNase 1 activity and NET degradation. Taken together, this identification of neutralizing antibodies against nucleases in HS expands the understanding of the pathogenesis of this disease to support an autoimmune mechanism in its underlying pathogenesis.


Assuntos
Armadilhas Extracelulares , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/metabolismo , Desoxirribonucleases/metabolismo , Desoxirribonuclease I/metabolismo , Autoanticorpos/metabolismo
3.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36602874

RESUMO

The molecular mediators of cell death and inflammation in Alzheimer's disease (AD) have yet to be fully elucidated. Caspase-8 is a critical regulator of several cell death and inflammatory pathways; however, its role in AD pathogenesis has not yet been examined in detail. In the absence of caspase-8, mice are embryonic lethal due to excessive receptor interacting protein kinase 3-dependent (RIPK3-dependent) necroptosis. Compound RIPK3 and caspase-8 mutants rescue embryonic lethality, which we leveraged to examine the roles of these pathways in an amyloid ß-mediated (Aß-mediated) mouse model of AD. We found that combined deletion of caspase-8 and RIPK3, but not RIPK3 alone, led to diminished Aß deposition and microgliosis in the mouse model of AD carrying human presenilin 1 and amyloid precursor protein with 5 familial AD mutations (5xFAD). Despite its well-known role in cell death, caspase-8 did not appear to affect cell loss in the 5xFAD model. In contrast, we found that caspase-8 was a critical regulator of Aß-driven inflammasome gene expression and IL-1ß release. Interestingly, loss of RIPK3 had only a modest effect on disease progression, suggesting that inhibition of necroptosis or RIPK3-mediated cytokine pathways is not critical during midstages of Aß amyloidosis. These findings suggest that therapeutics targeting caspase-8 may represent a novel strategy to limit Aß amyloidosis and neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Caspase 8/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Semin Immunopathol ; 44(3): 309-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355124

RESUMO

Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.


Assuntos
Doenças Cardiovasculares , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Autoanticorpos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Comorbidade , Humanos , Lúpus Eritematoso Sistêmico/complicações , Fatores de Risco
5.
Front Immunol ; 12: 715997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594331

RESUMO

Objective: Antibodies against carbamylated proteins (anti-CarP) are associated with poor prognosis and the development of bone erosions in rheumatoid arthritis (RA). RA neutrophils externalize modified autoantigens through the formation of neutrophil extracellular traps (NETs). Increased levels of the cathelicidin LL37 have been documented in the synovium of RA patients, but the cellular source remains unclear. We sought to determine if post-translational modifications of LL37, specifically carbamylation, occur during NET formation, enhance this protein's autoantigenicity, and contribute to drive bone erosion in the synovial joint. Methods: ELISA and Western blot analyses were used to identify carbamylated LL37 (carLL37) in biological samples. Anti-carLL37 antibodies were measured in the serum of HLA-DRB1*04:01 transgenic mice and in human RA synovial fluid. Results: Elevated levels of carLL37 were found in plasma and synovial fluid from RA patients, compared to healthy controls. RA NETs release carLL37 and fibroblast-like synoviocytes (FLS) internalized NET-bound carLL37 and loaded it into their MHCII compartment. HLA-DRB1*04:01 transgenic mice immunized with FLS containing NETs developed autoantibodies against carLL37. Anti-carLL37 antibodies were present in RA sera and synovial fluid and they correlated with radiologic bone erosion scores of the hands and feet in RA patients. CarLL37-IgG immune complexes enhanced the ability of monocytes to differentiate into osteoclasts and potentiated osteoclast-mediated extracellular matrix resorption. Conclusions: NETs are a source of carLL37 leading to induction of anti-carbamylated autoantibody responses. Furthermore, carLL37-IgG immune complexes may be implicated in the bone damage characteristic of RA. These results support that dysregulated NET formation has pathogenic roles in RA.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Catelicidinas/imunologia , Animais , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Camundongos , Osteoclastos/imunologia , Osteoclastos/metabolismo , Líquido Sinovial/imunologia , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa