Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309879

RESUMO

Cellulose nanofibers (CNF) have been widely studied for their biodegradability and for their unique advantages as a stabilizer in Pickering-type emulsions. However, it is challenging to produce cellulose nanofibers from agroindustry waste with good techno-functional properties, without the use of harsh process conditions. Green alternatives (eco-friendly) have been studied to obtain nanofibers, such as enzymatic hydrolysis and/or application of mechanical processes. In this work, we used acid hydrolysis (as a control and example of an efficient method), enzymatic hydrolysis and a mechanical process (ultrasound) to obtain cellulose nanofibers. We also evaluated the effect of the presence of ethyl groups in the cellulosic matrix (ethylcellulose) on the stabilizing mechanism of emulsions. All cellulose nanofibers were able to produce Pickering emulsions at concentrations of 0.01-0.05% (w/w), although showing differences in emulsion stability and digestibility. Morphology of the different cellulose nanofibers affected the viscosity of the aqueous suspensions used as continuous phase. Emulsions with nanofibers obtained from cassava peel (without the presence of ethyl groups) were stabilized only by the Pickering-type mechanism, while ethylcellulose nanofibers also showed surface activity that contributed to the stability of the emulsion. Furthermore, these latter emulsions showed greater release of free fatty acids in in vitro digestion compared to emulsions stabilized by cellulose nanofibers. Despite these differences, in vitro digestion showed the potential of applying cellulose-stabilized emulsions to control the rate of lipid digestion, due to the low amount of free fatty acids released (<20%).


Assuntos
Nanofibras , Emulsões , Ácidos Graxos não Esterificados , Celulose , Hidrólise
2.
Food Res Int ; 174(Pt 1): 113520, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986424

RESUMO

Although wheat gluten has remarkable technological properties, it can induce adverse immune reactions in susceptible individuals, such as wheat allergy and celiac disease. Technological processing and some additives on bread formulation can modify gluten physicochemical structure, but the knowledge about the impacts on the digestibility and immunogenicity of gluten is limited. The present study aimed to study the effect of adding organic acids (acetic or ascorbic) on dough rheological properties and bread technological characteristics. In addition, breads were subjected to in vitro digestion and the digesta were analyzed by confocal microscopy, SDS-PAGE and ELISA immunoassay. Acetic acid resulted in a decrease in dough development time up to 44 % and a reduction in stability up to 20 %. Ascorbic acid, present in vinegar, on the other hand, increased elastic modulus (G') and resistance to extension of dough. After the in vitro digestion, SDS-PAGE indicated that protein degradation started in the gastric phase, with the generation of low molecular weight peptides. Accordingly, ELISA immunoassay suggested a great reduction in immunogenic gliadin content from oral to gastric phase. At the end of the intestinal phase, samples with ascorbic acid did not differ from the control, while vinegar addition indicated a reduction in gluten immunogenicity with a reduction of about 44 % in immunogenic gliadin content compared to the control. Results show a window of opportunity in the modulation of wheat bread formulation with reduced allergenicity, while maintaining the technofunctional properties.


Assuntos
Gliadina , Glutens , Humanos , Glutens/química , Gliadina/química , Pão/análise , Ácido Acético , Ácido Ascórbico
3.
Food Res Int ; 161: 111837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192896

RESUMO

Ingestion of trans-resveratrol promotes health benefits, but the low solubility and chemical stability of this compound may hamper its bioaccessibility. To overcome these drawbacks, O/W emulsions loaded with resveratrol (liquid or gelled) and stabilized by soy protein isolate (SPI) were used to protect and vehiculate the bioactive compound to the target absorption site. Two distinct strategies were used to allow protein denaturation: heating the A) aqueous phase of the emulsion before homogenization; or B) emulsion after homogenization. Delivery efficacy of resveratrol was evaluated by static or semi-static in vitro digestion assays. For the semi-static approach, a dynamic gastric model was developed that was able to simulate the intensity of contraction forces and the gradual decrease of pH in the gastric step in vivo. The structure of the liquid emulsions remained similar in the static and semi-static digestion approaches, showing little influence of peristalsis on droplet size. The gelled emulsions showed breakdown of the gel network in the presence of the mechanical forces of the semi-static tests, although its structure was not completely degraded at the end of the in vitro digestibility tests. Anyway, the results of bioaccessibility of the carriers were similar (around 70-75%) and high, being these emulsions effective carriers of resveratrol. However, the bioaccessible fraction of liquid emulsions was much higher after digestion under static conditions, showing the relevance of developing dynamic systems for a more realistic simulation of in vitro digestion processes.


Assuntos
Digestão , Proteínas de Soja , Emulsões/química , Resveratrol , Solubilidade
4.
Curr Res Food Sci ; 5: 878-885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647558

RESUMO

In this study, the effects of different concentrations of pea protein concentrate (PPC) in the physical properties, porosity features, and oxidative stability of maltodextrin-based spray-dried microparticles containing orange essential oil (OEO, rich in limonene) were evaluated. The use of PPC resulted in spray-dried microparticles with encapsulation efficiencies of about 99 wt%, without visible pores, and relatively high glass transition temperature (66,4 °C) at Aw âˆ¼ 0.3. The nitrogen adsorption and positron annihilation lifetime spectroscopy measurements showed that the increase of PPC concentration from 2.4 to 4.8 wt% (g of PPC/100 g of emulsion) did not affect the porosity features of the microparticles. These results were confirmed by the profiles of OEO retention and limonene oxide production, which were similar for both samples throughout four weeks of storage. Based on these results, we verified that the lower amount of PPC we tested can effectively protect the OEO during storage, showing that a relatively cheaper orange flavor powder can be produced using less protein.

5.
Foods ; 11(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359925

RESUMO

Hybrid meat products are an excellent strategy to incorporate plant proteins into traditional meat formulations considering recent market trends focusing on the partial reduction in red meat content. In this work, we evaluated the effects of different concentrated plant proteins (soy, pea, fava bean, rice, and sunflower) in partially replacing meat in meat emulsion model systems. Soy, pea, and sunflower proteins showed great compatibility with the meat matrix, giving excellent emulsion stability and a cohesive protein network with good fat distribution. Otherwise, adding rice and fava bean proteins resulted in poor emulsion stability. Color parameters were affected by the intrinsic color of plant proteins and due to the reduction in myoglobin content. Both viscoelastic moduli, G' and G″ decreased with the incorporation of plant proteins, especially for rice and fava bean. The temperature sweep showed that myosin denaturation was the dominant effect on the G' increase. The water mobility was affected by plant proteins and the proportion between immobilized and intermyofibrillar water was quite different among treatments, especially those with fava bean and rice proteins. In vitro protein digestibility was lower for hybrid meat emulsion elaborated with rice protein. It is concluded that soy, pea, and mainly sunflower proteins have suitable compatibility with the meat matrix in emulsified products.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa