Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39062026

RESUMO

The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.

2.
NAR Cancer ; 6(2): zcae024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751936

RESUMO

In this review, we explore the transformative impact of next generation sequencing technologies in the realm of translatomics (the study of how translational machinery acts on a genome-wide scale). Despite the expectation of a direct correlation between mRNA and protein content, the complex regulatory mechanisms that affect this relationship remark the limitations of standard RNA-seq approaches. Then, the review characterizes crucial techniques such as polysome profiling, ribo-seq, trap-seq, proximity-specific ribosome profiling, rnc-seq, tcp-seq, qti-seq and scRibo-seq. All these methods are summarized within the context of cancer research, shedding light on their applications in deciphering aberrant translation in cancer cells. In addition, we encompass databases and bioinformatic tools essential for researchers that want to address translatome analysis in the context of cancer biology.

3.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176727

RESUMO

Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , Animais , Camundongos , eIF-2 Quinase/genética , Estresse do Retículo Endoplasmático/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Diferenciação Celular/genética , Sistema Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa