Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(25): e2121867119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696587

RESUMO

Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the ß-adrenergic receptor (ß-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes ß-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the ß-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteína de Ligação a Fosfatidiletanolamina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Humanos , Masculino , Células PC-3 , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosforilação , Neoplasias da Próstata/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais
2.
J Biomol NMR ; 77(1-2): 1-14, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534224

RESUMO

The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein-protein, protein-RNA, protein-DNA, and protein-ligand interactions in aqueous solutions. Typical [1H,1H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates 1H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [Water irrAdiation DEvoid (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [1H,1H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [1H,1H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.


Assuntos
Inteligência Artificial , Prótons , Ressonância Magnética Nuclear Biomolecular , Água/química , Proteínas/química
3.
Bioinformatics ; 37(8): 1176-1177, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32926121

RESUMO

MOTIVATION: Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION: CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.


Assuntos
Análise de Dados , Software , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Proteínas
4.
Phys Chem Chem Phys ; 24(31): 18477-18481, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895081

RESUMO

Water suppression is of paramount importance for many biological and analytical NMR spectroscopy applications. Here, we report the design of a new set of binomial-like radio frequency (RF) pulses that elude water irradiation while exciting or refocusing the remainder of the 1H spectrum. These pulses were generated using a combination of an evolutionary algorithm and artificial intelligence. They display higher sensitivity relative to classical water suppression schemes and tunable water selectivity to avoid suppressing 1H resonances near the water signal. The broad bandwidth excitation obtained with these RF pulses makes them suitable for several NMR applications at high and ultra-high-field magnetic fields.


Assuntos
Inteligência Artificial , Água , Algoritmos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular , Ondas de Rádio , Água/química
5.
Biophys J ; 118(5): 1109-1118, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32023434

RESUMO

Human glucokinase (GCK) is the prototypic example of an emerging class of proteins with allosteric-like behavior that originates from intrinsic polypeptide dynamics. High-resolution NMR investigations of GCK have elucidated millisecond-timescale dynamics underlying allostery. In contrast, faster motions have remained underexplored, hindering the development of a comprehensive model of cooperativity. Here, we map nanosecond-timescale dynamics and structural heterogeneity in GCK using a combination of unnatural amino acid incorporation, time-resolved fluorescence, and 19F nuclear magnetic resonance spectroscopy. We find that a probe inserted within the enzyme's intrinsically disordered loop samples multiple conformations in the unliganded state. Glucose binding and disease-associated mutations that suppress cooperativity alter the number and/or relative population of these states. Together, the nanosecond kinetics characterized here and the millisecond motions known to be essential for cooperativity provide a dynamical framework with which we address the origins of cooperativity and the mechanism of activated, hyperinsulinemia-associated, noncooperative variants.


Assuntos
Glucoquinase , Glucoquinase/genética , Glucoquinase/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Mutação
6.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092980

RESUMO

Antimicrobial peptides have been identified as one of the alternatives to the extensive use of common antibiotics as they show a broad spectrum of activity against human pathogens. Among these is Chionodracine (Cnd), a host-defense peptide isolated from the Antarctic icefish Chionodraco hamatus, which belongs to the family of Piscidins. Previously, we demonstrated that Cnd and its analogs display high antimicrobial activity against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species). Herein, we investigate the interactions with lipid membranes of Cnd and two analogs, Cnd-m3 and Cnd-m3a, showing enhanced potency. Using a combination of Circular Dichroism, fluorescence spectroscopy, and all-atom Molecular Dynamics (MD) simulations, we determined the structural basis for the different activity among these peptides. We show that all peptides are predominantly unstructured in water and fold, preferentially as α-helices, in the presence of lipid vesicles of various compositions. Through a series of MD simulations of 400 ns time scale, we show the effect of mutations on the structure and lipid interactions of Cnd and its analogs. By explaining the structural basis for the activity of these analogs, our findings provide structural templates to design minimalistic peptides for therapeutics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Sequência de Aminoácidos , Animais , Anisotropia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Membranas Artificiais , Simulação de Dinâmica Molecular , Perciformes/metabolismo , Conformação Proteica em alfa-Hélice , Água/química
7.
J Biomol NMR ; 70(3): 133-140, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396770

RESUMO

Paramagnetic relaxation enhancement (PRE) measurements constitute a powerful approach for detecting both permanent and transient protein-protein interactions. Typical PRE experiments require an intrinsic or engineered paramagnetic site on one of the two interacting partners; while a second, diamagnetic binding partner is labeled with stable isotopes (15N or 13C). Multiple paramagnetic labeled centers or reversed labeling schemes are often necessary to obtain sufficient distance restraints to model protein-protein complexes, making this approach time consuming and expensive. Here, we show a new strategy that combines a modified pulse sequence (1HN-Γ2-CCLS) with an asymmetric labeling scheme to enable the detection of both intra- and inter-molecular PREs simultaneously using only one sample preparation. We applied this strategy to the non-covalent dimer of ubiquitin. Our method confirmed the previously identified binding interface for the transient di-ubiquitin complex, and at the same time, unveiled the internal structural dynamics rearrangements of ubiquitin upon interaction. In addition to reducing the cost of sample preparation and speed up PRE measurements, by detecting the intra-molecular PRE this new strategy will make it possible to measure and calibrate inter-molecular distances more accurately for both symmetric and asymmetric protein-protein complexes.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Multimerização Proteica , Coloração e Rotulagem/métodos , Ubiquitina/química , Domínios e Motivos de Interação entre Proteínas , Coloração e Rotulagem/economia
8.
Molecules ; 23(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081441

RESUMO

Protein-protein interactions (PPIs) regulate a plethora of cellular processes and NMR spectroscopy has been a leading technique for characterizing them at the atomic resolution. Technically, however, PPIs characterization has been challenging due to multiple samples required to characterize the hot spots at the protein interface. In this paper, we review our recently developed methods that greatly simplify PPI studies, which minimize the number of samples required to fully characterize residues involved in the protein-protein binding interface. This original strategy combines asymmetric labeling of two binding partners and the carbonyl-carbon label selective (CCLS) pulse sequence element implemented into the heteronuclear single quantum correlation (¹H-15N HSQC) spectra. The CCLS scheme removes signals of the J-coupled 15N⁻13C resonances and records simultaneously two individual amide fingerprints for each binding partner. We show the application to the measurements of chemical shift correlations, residual dipolar couplings (RDCs), and paramagnetic relaxation enhancements (PRE). These experiments open an avenue for further modifications of existing experiments facilitating the NMR analysis of PPIs.


Assuntos
Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono , Isótopos de Nitrogênio , Ligação Proteica , Conformação Proteica
9.
J Biomol NMR ; 69(4): 237-243, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29164453

RESUMO

In multidimensional solution NMR experiments, π pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during π pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated π pulse (G5) optimized for both inversion and refocusing in widely used 2- and 3-dimensional experiments. By replacing most of the hard π pulses, adiabatic or composite pulses on the 1H, 13C and 15N channels with G5 pulses, we obtained signal enhancements ranging from 80 to 240%. We anticipate that triply-compensated pulses will be crucial for improving the performance of multidimensional and multinuclear pulse sequences at ultra-high fields.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos
10.
Biochim Biophys Acta ; 1848(6): 1285-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25749154

RESUMO

Chionodracine (Cnd) is a 22-residue peptide of the piscidin family expressed in the gills of the Chionodraco hamatus as protection from bacterial infections. Here, we report the effects of synthetic Cnd on both Psychrobacter sp. TAD1 and Escherichia coli bacteria, as well as membrane models. We found that Cnd perforates the inner and outer membranes of Psychrobacter sp. TAD1, making discrete pores that cause the cellular content to leak out. Membrane disruption studies using intrinsic and extrinsic fluorescence spectroscopy revealed that Cnd behaves similarly to other piscidins, with comparable membrane partition coefficients. Membrane accessibility assays and structural studies using NMR in detergent micelles show that Cnd adopts a canonical topology of antimicrobial helical peptides, with the hydrophobic face toward the lipid environment and the hydrophilic face toward the bulk solvent. The analysis of Cnd free energy of binding to vesicles with different lipid contents indicates a preference for charged phospholipids and a more marked binding to native E. coli extracts. Taken with previous studies on piscidin-like peptides, we conclude that Cnd first adsorbs to the membrane, and then forms pores together with membrane fragmentation. Since Cnd has only marginal hemolytic activity, it constitutes a good template for developing new antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Perciformes/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoresceínas/metabolismo , Fluorescência , Cinética , Espectroscopia de Ressonância Magnética , Micelas , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Iodeto de Potássio/química , Psychrobacter/efeitos dos fármacos , Temperatura
11.
Elife ; 122024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913408

RESUMO

Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA-C). This long-range synergistic action is involved in substrate recognition and fidelity, and it may also regulate PKA's association with regulatory subunits and other binding partners. To date, a complete understanding of this intramolecular mechanism is still lacking. Here, we integrated NMR(Nuclear Magnetic Resonance)-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of PKA-C. We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-ß4 loop. We validated the second excited state by analyzing the F100A mutant of PKA-C, assessing its structural response to ATP and substrate binding. While PKA-CF100A preserves its catalytic efficiency with Kemptide, this mutation rearranges the αC-ß4 loop conformation, interrupting the coupling of the two lobes and abolishing the allosteric binding cooperativity. The highly conserved αC-ß4 loop emerges as a pivotal element to control the synergistic binding of nucleotide and substrate, explaining how mutations or insertions near or within this motif affect the function and drug sensitivity in homologous kinases.


Assuntos
Simulação de Dinâmica Molecular , Regulação Alostérica , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Conformação Proteica , Ligação Proteica , Nucleotídeos/metabolismo , Especificidade por Substrato , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
12.
Nat Commun ; 14(1): 4144, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438347

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a powerful high-resolution tool for characterizing biomacromolecular structure, dynamics, and interactions. However, the lengthy longitudinal relaxation of the nuclear spins significantly extends the total experimental time, especially at high and ultra-high magnetic field strengths. Although longitudinal relaxation-enhanced techniques have sped up data acquisition, their application has been limited by the chemical shift dispersion. Here we combined an evolutionary algorithm and artificial intelligence to design 1H and 15N radio frequency (RF) pulses with variable phase and amplitude that cover significantly broader bandwidths and allow for rapid data acquisition. We re-engineered the basic transverse relaxation optimized spectroscopy experiment and showed that the RF shapes enhance the spectral sensitivity of well-folded proteins up to 180 kDa molecular weight. These RF shapes can be tailored to re-design triple-resonance experiments for accelerating NMR spectroscopy of biomacromolecules at high fields.


Assuntos
Algoritmos , Inteligência Artificial , Frequência Cardíaca , Campos Magnéticos , Espectroscopia de Ressonância Magnética
13.
FEBS Lett ; 597(8): 1055-1072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892429

RESUMO

The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Nucleotídeos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Sítios de Ligação , Domínio Catalítico , Trifosfato de Adenosina/química , Regulação Alostérica
14.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37693538

RESUMO

Although the αC-ß4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, Local Spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-ß4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-ß4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.

15.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745542

RESUMO

Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic (C) subunit of protein kinase A (PKA). Not only this long-range synergistic action is involved in substrate recognition and fidelity, but it is likely to regulate PKA association with regulatory subunits and other binding partners. To date, a complete understanding of the molecular determinants for this intramolecular mechanism is still lacking. Here, we used an integrated NMR-restrained molecular dynamics simulations and a Markov Model to characterize the free energy landscape and conformational transitions of the catalytic subunit of protein kinase A (PKA-C). We found that the apo-enzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the tip of the αC-ß4 loop. To experimentally validate the second excited state, we mutated F100 into alanine and used NMR spectroscopy to characterize the binding thermodynamics and structural response of ATP and a prototypical peptide substrate. While the activity of PKA-CF100A toward a prototypical peptide substrate is unaltered and the enzyme retains its affinity for ATP and substrate, this mutation rearranges the αC-ß4 loop conformation interrupting the allosteric coupling between nucleotide and substrate. The highly conserved αC-ß4 loop emerges as a pivotal element able to modulate the synergistic binding between nucleotide and substrate and may affect PKA signalosome. These results may explain how insertion mutations within this motif affect drug sensitivity in other homologous kinases.

16.
PNAS Nexus ; 1(4): pgac133, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36106184

RESUMO

High-fidelity control of spin ensemble dynamics is essential for many research areas, spanning from quantum computing and radio-frequency (RF) engineering to NMR spectroscopy and imaging. However, attaining robust and high-fidelity spin operations remains an unmet challenge. Using an evolutionary algorithm and artificial intelligence (AI), we designed new RF pulses with customizable spatial or temporal field inhomogeneity compensation. Compared with the standard RF shapes, the new AI-generated pulses show superior performance for bandwidth, robustness, and tolerance to field imperfections. As a benchmark, we constructed a spin entanglement operator for the weakly coupled two-spin-1/2 system of 13CHCl3, achieving high-fidelity transformations under multiple inhomogeneity sources. We then generated band-selective and ultra-broadband RF pulses typical of biomolecular NMR spectroscopy. When implemented in multipulse NMR experiments, the AI-generated pulses significantly increased the sensitivity of medium-size and large protein spectra relative to standard pulse sequences. Finally, we applied the new pulses to typical imaging experiments, showing a remarkable tolerance to changes in the RF field. These AI-generated RF pulses can be directly implemented in quantum information, NMR spectroscopy of biomolecules, magnetic resonance imaging techniques for in vivo and materials sciences.

17.
Cardiol Cardiovasc Med ; 6(5): 493-496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36380984

RESUMO

Background: Cardiovascular diseases are the most common non-obstetric cause of maternal death. These cases became more common thanks to the improvement in cardiovascular therapies. A multidisciplinary team is necessary to manage these pregnancies. Case Report: A 32 years old women at the 25th week of gestation for acute heart failure in pre-existing left ventricular dysfunction induced by radio-chemotherapy admitted to the Coronary Unit of IRCCS Policlinico Universitario Agostino Gemelli for worsening of dyspneic symptoms and anuria not responding to diuretic therapy. At the echocardiogram: ejection fraction 30%, enlarged left atrium, systolic pulmonary arterial pressure 38 mmHg, bilateral pleural effusion, bilateral diffused pulmonary B lines. A multidisciplinary team composed by cardiologists, gynecologists, anesthesiologists, cardiac surgeons, neonatologists and bioethicists decided for an elective cesarean delivery at the 27th week of gestation in the hybrid cardio-thoracic operating theater. Anesthesia was provided by combined spinal-epidural technique under invasive continuous hemodynamic monitoring with the Edwards Lifesciences HemoSphere with Hypotension Prediction Index (HPI) and ForeSight technology (Edwards Lifesciences, Irvine, USA) through catheterization of the left radial artery. The femoral arteries were left available for extracorporeal circulation. Continuous norepinephrine infusion was started once liquor was collected in the spinal needle at a 0.1 mcg/kg/minute through a central line and was continued until the end of surgery. Fluid management consisted of a total of 200 ml of crystalloids. HPI values never reached alarm values (maximum value =10). The patient was discharged home on the 5th day after delivery with good hemodynamic compensation. The baby was intubated at birth and then gradually weaned from mechanical ventilation, then discharged.

18.
Sci Adv ; 8(30): eabo0696, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905186

RESUMO

ATP-competitive inhibitors are currently the largest class of clinically approved drugs for protein kinases. By targeting the ATP-binding pocket, these compounds block the catalytic activity, preventing substrate phosphorylation. A problem with these drugs, however, is that inhibited kinases may still recognize and bind downstream substrates, acting as scaffolds or binding hubs for signaling partners. Here, using protein kinase A as a model system, we show that chemically different ATP-competitive inhibitors modulate the substrate binding cooperativity by tuning the conformational entropy of the kinase and shifting the populations of its conformationally excited states. Since we found that binding cooperativity and conformational entropy of the enzyme are correlated, we propose a new paradigm for the discovery of ATP-competitive inhibitors, which is based on their ability to modulate the allosteric coupling between nucleotide and substrate-binding sites.

19.
Nat Struct Mol Biol ; 29(10): 990-999, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36202993

RESUMO

The Hedgehog (Hh) cascade is central to development, tissue homeostasis and cancer. A pivotal step in Hh signal transduction is the activation of glioma-associated (GLI) transcription factors by the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO). How SMO activates GLI remains unclear. Here we show that SMO uses a decoy substrate sequence to physically block the active site of the cAMP-dependent protein kinase (PKA) catalytic subunit (PKA-C) and extinguish its enzymatic activity. As a result, GLI is released from phosphorylation-induced inhibition. Using a combination of in vitro, cellular and organismal models, we demonstrate that interfering with SMO-PKA pseudosubstrate interactions prevents Hh signal transduction. The mechanism uncovered echoes one used by the Wnt cascade, revealing an unexpected similarity in how these two essential developmental and cancer pathways signal intracellularly. More broadly, our findings define a mode of GPCR-PKA communication that may be harnessed by a range of membrane receptors and kinases.


Assuntos
Antineoplásicos , Proteínas de Drosophila , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Fatores de Transcrição/metabolismo
20.
Curr Biol ; 18(21): 1687-93, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-18976917

RESUMO

The Tyrolean Iceman was a witness to the Neolithic-Copper Age transition in Central Europe 5350-5100 years ago, and his mummified corpse was recovered from an Alpine glacier on the Austro-Italian border in 1991 [1]. Using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products, we have retrieved the first complete mitochondrial-genome sequence of a prehistoric European. We have then compared it with 115 related extant lineages from mitochondrial haplogroup K. We found that the Iceman belonged to a branch of mitochondrial haplogroup K1 that has not yet been identified in modern European populations. This is the oldest complete Homo sapiens mtDNA genome generated to date. The results point to the potential significance of complete-ancient-mtDNA studies in addressing questions concerning the genetic history of human populations that the phylogeography of modern lineages is unable to tackle.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Múmias , Humanos , Masculino , Filogenia , Preservação Biológica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa