RESUMO
BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismoRESUMO
Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor or tumor necrosis factor receptor superfamily member 11B, is well known as a modulator of bone remodeling. The contribution of OPG to cardiovascular disease (CVD) has been suggested, but its molecular mechanism is complex and remains unclear. In the present study, Alves-Lopes et al. (Clin. Sci. (Lond.) (2021) 135(20): https://doi.org/10.1042/CS20210643) reported the critical role of syndecan-1 (SDC-1, also known as CD138), a surface protein part of the endothelial glycocalyx, in OPG-induced vascular dysfunction. The authors found that in endothelial cells (ECs), through SDC-1, OPG increased eNOS Thr495 phosphorylation, thereby inhibiting eNOS activity. Furthermore, the OPG-SDC-1 interaction increased reactive oxygen species (ROS) production through NOX1/4 activation. Both the reduced eNOS activity and induced ROS production inhibited NO production and impaired EC function. In vascular smooth muscle cells (VSMCs), the OPG-SDC-1 interaction increased ROS production through NOX1/4 activation, subsequently increased MLC phosphorylation-mediated Rho kinase-MYPT1 regulation, leading to increased vascular contraction. Ultilizing wire myography and mechanistic studies, the authors nicely provide the evidence that SDC-1 plays a crucial role in OPG-induced vascular dysfunction. As we mentioned above, the molecular mechanism and roles of OPG in cardiovascular system are complex and somewhat confusing. In this commentary, we briefly summarize the OPG-mediated signaling pathways in cardiovascular system.
Assuntos
Células Endoteliais , Osteoprotegerina , Células Endoteliais/metabolismo , Humanos , Inflamação , Osteoprotegerina/metabolismo , Estresse Oxidativo , Espécies Reativas de OxigênioRESUMO
PURPOSE OF REVIEW: As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS: Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.
Assuntos
Aterosclerose , Colesterol , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismoRESUMO
The formation of neuromas involves expansion of the cellular components of peripheral nerves. The onset of these disorganized tumors involves activation of sensory nerves and neuroinflammation. Particularly problematic in neuroma is arborization of axons leading to extreme, neuropathic pain. The most common sites for neuroma are the ends of transected nerves following injury; however, this rodent model does not reliably result in neuroma formation. In this study, we established a rodent model of neuroma in which the sciatic nerve was loosely ligated with two chromic gut sutures. This model formed neuromas reliably (â¼95%), presumably through activation of the neural inflammatory cascade. Resulting neuromas had a disorganized structure and a significant number of replicating cells. Quantification of changes in perineurial and Schwann cells showed a significant increase in these populations. Immunohistochemical analysis showed the presence of ß-tubulin 3 in the rapidly expanding nerve and a decrease in neurofilament heavy chain compared to the normal nerve, suggesting the axons forming a disorganized structure. Measurement of the permeability of the blood-nerve barrier shows that it opened almost immediately and remained open as long as 10 days. Studies using an antagonist of the ß3-adrenergic receptor (L-748,337) or cromolyn showed a significant reduction in tumor size and cell expansion as determined by flow cytometry, with an improvement in the animal's gait detected using a Catwalk system. Previous studies in our laboratory have shown that heterotopic ossification is also a result of the activation of neuroinflammation. Since heterotopic ossification and neuroma often occur together in amputees, they were induced in the same limbs of the study animals. More heterotopic bone was formed in animals with neuromas as compared to those without. These data collectively suggest that perturbation of early neuroinflammation with compounds such as L-748,337 and cromolyn may reduce formation of neuromas.
Assuntos
Neuroma/tratamento farmacológico , Neuroma/metabolismo , Nervo Isquiático/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Ratos , Receptores Adrenérgicos beta 3/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Tubulina (Proteína)/metabolismoRESUMO
Heterotopic ossification (HO), the abnormal formation of bone within soft tissues, is a major complication after severe trauma or amputation. Transient brown adipocytes have been shown to be a critical regulator of this process in a mouse model of HO. In this study, we evaluated the presence of brown fat within human HO lesions. Most of the excised tissue samples displayed histological characteristics of bone, fibroproliferative cells, blood vessels, and adipose tissue. Immunohistochemical analysis revealed extensive expression of uncoupling protein 1 (UCP1), a definitive marker of brown adipocytes, within HO-containing tissues but not normal tissues. As seen in the brown adipocytes observed during HO in the mouse, these UCP1+ cells also expressed the peroxisome proliferator-activated receptor γ coactivator 1α. However, further characterization showed these cells, like their mouse counterparts, did not express PR domain containing protein 16, a key factor present in brown adipocytes found in depots. Nor did they express factors present in beige adipocytes. These results identify a population of UCP1+ cells within human tissue undergoing HO that do not entirely resemble either classic brown or beige adipocytes, but rather a specialized form of brown adipocyte-like cells, which have a unique function. These cells may offer a new target to prevent this unwanted bone.
Assuntos
Tecido Adiposo Marrom/metabolismo , Ossificação Heterotópica/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/metabolismo , Ferimentos e Lesões/metabolismo , Humanos , Imuno-Histoquímica , Ossificação Heterotópica/etiologia , Ferimentos e Lesões/complicaçõesRESUMO
BACKGROUND: Heterotopic ossification (HO) is the process of bone formation at a nonskeletal site. Recently, we showed that the earliest steps occur in sensory nerves. We now extend these studies by identifying unique osteogenic progenitors within the endoneurial compartment of sensory nerves. QUESTIONS/PURPOSES: We asked: (1) What is the nature of the osteoprogenitor in the endoneurium of peripheral nerves? (2) How do osteoprogenitors travel from the nerve to the site of new bone formation? METHODS: HO was induced by intramuscular injection of Ad5BMP-2-transduced cells in mice. Osteoprogenitors were identified through immunohistochemistry and then quantified and further characterized by fluorescence-activated cell sorting and immunocytochemistry. The kinetics of the appearance of markers of extravasation was determined by quantitative reverse transcription-polymerase chain reaction. In each experiment mice were injected with bone morphogenetic protein-2 (BMP-2)-producing cells (experimental) or with cells transduced with empty vector or, in some cases, a group receiving no injection (control). RESULTS: Induction of HO leads to the expression, within 24 hours, of osteoblast-specific transcription factors in cells in the endoneurium followed by their coordinate disappearance from the nerve at 48 hours. They reappear in blood also at 48 hours after induction. During vessel entrance they begin to express the tight junction molecule, claudin 5. The cells expressing both the osteoblast-specific transcription factor, osterix, as well as claudin 5, then disappear from circulation at approximately 3 to 4 days by extravasation into the site of new bone formation. These endoneurial osteoprogenitors express neural markers PDGFRα, musashi-1, and the low-affinity nerve growth factor receptor p75(NTR) as well as the endothelial marker Tie-2. In a key experiment, cells that were obtained from mice that were injected with cells transduced with an empty vector, at 2 days after injection, contained 0.83% (SD, 0.07; 95% confidence interval [CI], 0.59-1.05) cells expressing claudin 5. However, cells that were obtained from mice 2 days after injection of BMP-2-producing cells contained 4.5% cells expressing claudin 5 (SD, 0.72%; 95% CI, 2.01-6.94; p < 0.0015). Further analysis revealed that all of the cells expressing claudin 5 were found to be positive for osteoblast-specific markers, whereas cells not expressing claudin 5 were negative for these same markers. CONCLUSIONS: The findings suggest that the endoneurial progenitors are the major osteogenic precursors that are used for HO. They exit the nerve through the endoneurial vessels, flow through vessels to the site of new bone formation, and then extravasate out of the vessels into this site. CLINICAL RELEVANCE: The biogenesis of osteoblasts in HO is very different than expected and shows that HO is, at least in part, a neurological disorder. This could result in a major shift in orthopaedic methodologies to prevent or treat this disease. The fact that nerves are intimately involved in the process may also provide clues that will lead to an explanation of the clinical fact that HO often occurs as a result of traumatic brain injury.
Assuntos
Linhagem da Célula , Células-Tronco Neurais/patologia , Ossificação Heterotópica/patologia , Osteoblastos/patologia , Células Receptoras Sensoriais/patologia , Adenoviridae/genética , Animais , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 2/biossíntese , Proteína Morfogenética Óssea 2/genética , Movimento Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Transdução GenéticaRESUMO
Non-invasive injectable cellular therapeutic strategies based on sustained delivery of physiological levels of BMP-2 for spinal fusion are emerging as promising alternatives, which could provide sufficient fusion without the associated surgical risks. However, these injectable therapies are dependent on bone formation occurring only at the specific target region. In this study, we developed and deployed fluorescence gene reporter tomography (FGRT) to provide information on in vivo cell localization and viability. This information is sought to confirm the ideal placement of the materials with respect to the area where early bone reaction is required, ultimately providing three dimensional data about the future fusion. However, because almost all conventional fluorescence gene reporters require visible excitation wavelengths, current in vivo imaging of fluorescent proteins is limited by high tissue absorption and confounding autofluorescence. We previously administered fibroblasts engineered to produce BMP-2, but is difficult to determine 3-D information of placement prior to bone formation. Herein we used the far-red fluorescence gene reporter, IFP1.4 to report the position and viability of fibroblasts and developed 3-D tomography to provide placement information. A custom small animal, far-red fluorescence tomography system integrated into a commercial CT scanner was used to assess IFP1.4 fluorescence and to demark 3-D placement of encapsulated fibroblasts with respect to the vertebrae and early bone formation as assessed from CT. The results from three experiments showed that the placement of the materials within the spine could be detected. This work shows that in vivo fluorescence gene reporter tomography of cell-based gene therapy is feasible and could help guide cell-based therapies in preclinical models.
Assuntos
Genes Reporter , Terapia Genética , Tomografia Computadorizada por Raios X/métodos , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/uso terapêutico , Sobrevivência Celular , Fluorescência , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Imagem Óptica , Fusão VertebralRESUMO
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFßR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
RESUMO
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
RESUMO
Background: The deSUMOylase sentrin-specific isopeptidase 2 (SENP2) plays a crucial role in atheroprotection. However, the phosphorylation of SENP2 at T368 under disturbed flow (D-flow) conditions hinders its nuclear function and promotes endothelial cell (EC) activation. SUMOylation has been implicated in D-flow-induced endothelial-to-mesenchymal transition (endoMT), but the precise role of SENP2 in counteracting this process remains unclear. Method: We developed a phospho-specific SENP2 S344 antibody and generated knock-in (KI) mice with a phospho-site mutation of SENP2 S344A using CRISPR/Cas9 technology. We then investigated the effects of SENP2 S344 phosphorylation under two distinct flow patterns and during hypercholesteremia (HC)-mediated EC activation. Result: Our findings demonstrate that laminar flow (L-flow) induces phosphorylation of SENP2 at S344 through the activation of checkpoint kinase 1 (CHK1), leading to the inhibition of ERK5 and p53 SUMOylation and subsequent suppression of EC activation. We observed a significant increase in lipid-laden lesions in both the aortic arch (under D-flow) and descending aorta (under L-flow) of female hypercholesterolemic SENP2 S344A KI mice. In male hypercholesterolemic SENP2 S344A KI mice, larger lipid-laden lesions were only observed in the aortic arch area, suggesting a weaker HC-mediated atherogenesis in male mice compared to females. Ionizing radiation (IR) reduced CHK1 expression and SENP2 S344 phosphorylation, attenuating the pro-atherosclerotic effects observed in female SENP2 S344A KI mice after bone marrow transplantation (BMT), particularly in L-flow areas. The phospho-site mutation SENP2 S344A upregulates processes associated with EC activation, including inflammation, migration, and proliferation. Additionally, fibrotic changes and up-regulated expression of EC marker genes were observed. Apoptosis was augmented in ECs derived from the lungs of SENP2 S344A KI mice, primarily through the inhibition of ERK5-mediated expression of DNA damage-induced apoptosis suppressor (DDIAS). Summary: In this study, we have revealed a novel mechanism underlying the suppressive effects of L-flow on EC inflammation, migration, proliferation, apoptosis, and fibrotic changes through promoting CHK1-induced SENP2 S344 phosphorylation. The phospho-site mutation SENP2 S344A responds to L-flow through a distinct mechanism, which involves the upregulation of both mesenchymal and EC marker genes.
RESUMO
We have shown that membrane-associated guanylate kinase with inverted domain structure-1 (MAGI1), a scaffold protein with six PSD95/DiscLarge/ZO-1 (PDZ) domains, is involved in the regulation of endothelial cell (EC) activation and atherogenesis in mice. In addition to causing acute respiratory disease, influenza A virus (IAV) infection plays an important role in atherogenesis and triggers acute coronary syndromes and fatal myocardial infarction. Therefore, the aim of this study is to investigate the function and regulation of MAGI1 in IAV-induced EC activation. Whereas, EC infection by IAV increases MAGI1 expression, MAGI1 depletion suppresses IAV infection, suggesting that the induction of MAGI1 may promote IAV infection. Treatment of ECs with oxidized low-density lipoprotein (OxLDL) increases MAGI1 expression and IAV infection, suggesting that MAGI1 is part of the mechanistic link between serum lipid levels and patient prognosis following IAV infection. Our microarray studies suggest that MAGI1-depleted ECs increase protein expression and signaling networks involve in interferon (IFN) production. Specifically, infection of MAGI1-null ECs with IAV upregulates expression of signal transducer and activator of transcription 1 (STAT1), interferon b1 (IFNb1), myxovirus resistance protein 1 (MX1) and 2'-5'-oligoadenylate synthetase 2 (OAS2), and activate STAT5. By contrast, MAGI1 overexpression inhibits Ifnb1 mRNA and MX1 expression, again supporting the pro-viral response mediated by MAGI1. MAGI1 depletion induces the expression of MX1 and virus suppression. The data suggests that IAV suppression by MAGI1 depletion may, in part, be due to MX1 induction. Lastly, interferon regulatory factor 3 (IRF3) translocates to the nucleus in the absence of IRF3 phosphorylation, and IRF3 SUMOylation is abolished in MAGI1-depleted ECs. The data suggests that MAGI1 inhibits IRF3 activation by maintaining IRF3 SUMOylation. In summary, IAV infection occurs in ECs in a MAGI1 expression-dependent manner by inhibiting anti-viral responses including STATs and IRF3 activation and subsequent MX1 induction, and MAGI1 plays a role in EC activation, and in upregulating a pro-viral response. Therefore, the inhibition of MAGI1 is a potential therapeutic target for IAV-induced cardiovascular disease.
RESUMO
Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.
RESUMO
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1(-/-) ), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.
Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Inflamação Neurogênica/complicações , Inflamação Neurogênica/fisiopatologia , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/metabolismo , Células Receptoras Sensoriais/patologia , Animais , Proteína Morfogenética Óssea 2/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , Cromolina Sódica/farmacologia , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/genética , Células Receptoras Sensoriais/imunologia , Substância P/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Microtomografia por Raio-XRESUMO
More than a decade has passed since the first experiments using adenovirus-transduced cells expressing bone morphogenetic protein 2 were performed for the synthesis of bone. Since this time, the field of bone gene therapy has tackled many issues surrounding safety and efficacy of this type of strategy. We present studies examining the parameters of the timing of bone healing, and remodeling when heterotopic ossification (HO) is used for bone fracture repair using an adenovirus gene therapy approach. We use a rat fibula defect, which surprisingly does not heal even when a simple fracture is introduced. In this model, the bone quickly resorbs most likely due to the non-weight bearing nature of this bone in rodents. Using our gene therapy system robust HO can be introduced at the targeted location of the defect resulting in bone repair. The HO and resultant bone healing appeared to be dose dependent, based on the number of AdBMP2-transduced cells delivered. Interestingly, the HO undergoes substantial remodeling, and assumes the size and shape of the missing segment of bone. However, in some instances we observed some additional bone associated with the repair, signifying that perhaps the forces on the newly forming bone are inadequate to dictate shape. In all cases, the HO appeared to fuse into the adjacent long bone. The data collectively indicates that the use of BMP2 gene therapy strategies may vary depending on the location and nature of the defect. Therefore, additional parameters should be considered when implementing such strategies.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Fíbula/anormalidades , Terapia Genética/métodos , Adenoviridae/genética , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/anormalidades , Linhagem Celular , Humanos , Camundongos , Osteogênese/fisiologia , Ratos , Cicatrização/fisiologiaRESUMO
Bone morphogenetic protein 2 (BMP2)-induced heterotopic bone formation (HBF) starts synchronously from zero upon BMP2 induction, which is advantageous for lineage tracking. The studies reported here in GLAST-CreErt2 :tdTomato red (TR)floxSTOPflox mice during BMP2-induced HBF show 78.8 ± 11.6% of chondrocytes and 86.5 ± 1.9% of osteoblasts are TR+ after approximately 1 week. Clustering after single-cell RNAseq resulted in nine cell types, and analysis revealed one as a highly replicating stem-like cell (RSC). Pseudotiming suggested that the RSC transitions to a mesenchymal stem-like cell that simultaneously expresses multiple osteoblast and chondrocyte transcripts (chondro-osseous progenitor [COP]). RSCs and COPs were isolated using flow cytometry for unique surface markers. Isolated RSCs (GLAST-TR+ Hmmr+ Cd200- ) and COPs (GLAST-TR+ Cd200+ Hmmr- ) were injected into the muscle of mice undergoing HBF. Approximately 9% of the cells in heterotopic bone (HB) in mice receiving RSCs were GLAST-TR+ , compared with less than 0.5% of the cells in mice receiving COPs, suggesting that RSCs are many times more potent than COPs. Analysis of donor-derived TR+ RSCs isolated from the engrafted HB showed approximately 50% were COPs and 45% were other cells, presumably mature bone cells, confirming the early nature of the RSCs. We next isolated RSCs from these mice (approximately 300) and injected them into a second animal, with similar findings upon analysis of HBF. Unlike other methodology, single cell RNAseq has the ability to detect rare cell populations such as RSCs. The fact that RSCs can be injected into mice and differentiate suggests their potential utility for tissue regeneration.
Assuntos
Proteína Morfogenética Óssea 2 , Ossificação Heterotópica , Células-Tronco , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais , Camundongos , Osteoblastos , Células-Tronco/citologiaRESUMO
The use of an adenoviral vector to transduce cells allows for certain secreted proteins or growth factors to be generated in vivo in eukaryotic cells with accurate posttranslational processing. The use of transduced cells eliminates viral toxicity, allows for targeted expression of the secreted factor at a specific site, and ensures that the therapy will be turned off when the cells are cleared by the organism. Here we describe the delivery system which utilizes cells transduced with a non-replicating adenovirus containing bone morphogenetic protein 2 (BMP-2) in the E1 region of the cassette. With this method of delivery, small amounts of the protein can incite de novo bone formation.
Assuntos
Proteínas Morfogenéticas Ósseas/genética , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Adenoviridae/genética , Fosfatase Alcalina , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Camundongos , Ratos , Transdução GenéticaRESUMO
Heterotopic ossification (HO), or de novo bone formation in soft tissue, is often observed following traumatic injury. Recent studies suggest that peripheral nerves may play a key functional role in this process. The results supporting a neurological basis for HO are examined in this article. Evidence supports the fact that BMPs released from bone matrix possess the capacity to induce HO. However, the process cannot be recapitulated using recombinant proteins without extremely high doses suggesting other components are required for this process. Study of injuries that increase risk for HO, i.e. amputation, hip replacement, elbow fracture, burn, and CNS injury suggests that a likely candidate is traumatic injury of adjacent peripheral nerves. Recent studies suggest neuroinflammation may play a key functional role, by its ability to open the blood-nerve barrier (BNB). Barrier opening is characterized by a change in permeability and is experimentally assessed by the ability of Evans blue dye to enter the endoneurium of peripheral nerves. A combination of BMP and barrier opening is required to activate bone progenitors in the endoneurial compartment. This process is referred to as "neurogenic HO".
Assuntos
Ossificação Heterotópica/patologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Movimento Celular/fisiologia , Humanos , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Células-Tronco/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
De novo bone formation can occur in soft tissues as a result of traumatic injury. This process, known as heterotopic ossification (HO), has recently been linked to the peripheral nervous system. Studies suggest that HO may resemble neural crest-derived bone formation and is activated through the release of key bone matrix proteins leading to opening of the blood-nerve barrier (BNB). One of the first steps in this process is the activation of a neuro-inflammatory cascade, which results in migration of chondro-osseous progenitors, and other cells from both the endoneurial and perineurial regions of the peripheral nerves. The perineurial cells undergo brown adipogenesis, to form essential support cells, which regulate expression and activation of matrix metallopeptidase 9 (MMP9) an essential regulatory protein involved in opening the BNB. However, recent studies suggest that, in mice, a key bone matrix protein, bone morphogenetic protein 2 (BMP2) is able to immediately cross the BNB to activate signaling in specific cells within the endoneurial compartment. BMP signaling correlates with bone formation and appears critical for the induction of HO. Surprisingly, several other bone matrix proteins have also been reported to regulate the BNB, leading us to question whether these matrix proteins are important in regulating the BNB. However, this temporary regulation of the BNB does not appear to result in degeneration of the peripheral nerve, but rather may represent one of the first steps in innervation of the newly forming bone.
RESUMO
Osteoinductive systems to induce targeted rapid bone formation hold clinical promise, but development of technologies for clinical use that must be tested in animal models is often a difficult challenge. We previously demonstrated that implantation of human cells transduced with Ad5F35BMP2 to express high levels of bone morphogenetic protein-2 (BMP2) resulted in rapid bone formation at targeted sites. Inclusion of human cells in this model precluded us from testing this system in an immune-competent animal model, thus limiting information about the efficacy of this approach. Here, for the first time we demonstrate the similarity between BMP2-induced endochondral bone formation in a system using human cells in an immune-incompetent mouse and a murine cell-based BMP2 gene therapy system in immune-competent animals. In both cases the delivery cells are rapidly cleared, within 5 days, and in neither case do they appear to contribute to any of the structures forming in the tissues. Endochondral bone formation progressed through a highly ordered series of stages that were both morphologically and temporally indistinguishable between the two models. Even longterm analysis of the heterotopic bone demonstrated similar bone volumes and the eventual remodeling to form similar structures. The results suggest that the ability of BMP2 to rapidly induce bone formation overrides contributions from either immune status or the nature of delivery cells.
Assuntos
Proteínas Morfogenéticas Ósseas/genética , Terapia Genética , Imunocompetência/imunologia , Modelos Biológicos , Osteogênese/fisiologia , Fator de Crescimento Transformador beta/genética , Células 3T3 , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/imunologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/uso terapêuticoRESUMO
Adenovirus BMP2 gene therapy has potential of a robust endogenous BMP2 production, while circumventing many of the problems currently associated with recombinant BMP2. The study objective was to determine and compare the ability of adenovirus BMP2 ex vivo gene therapy in combination with three types of collagen carriers to release BMP2 in vitro and to induce heterotopic bone formation in vivo. Human CD45-negative bone marrow cells were ex vivo transduced with a chimeric Ad5F35BMP2. The bioactivity of BMP2 produced by the transduced cells without a carrier, or in combination with three types of collagen carriers (injectable gel, microporous sponge, collagen-mineral composite) was measured and compared to rhBMP2. The heterotopic osteoinductivity assay was performed in immunocompromised NOD/SCID mice. A statistically significant decrease in the amount of rhBMP2 and adenoviral BMP2 released in vitro from the collagen-mineral composite carrier was noted (21% and 12%, respectively), whereas the amounts of rhBMP2 and adenoviral BMP2 released from the gel or sponge carriers were comparable. In vivo, 14 days post-implantation, no bone was formed consistently in groups with the empty Ad5F35HM4 control vector. New bone formation was evident radiographically and histologically in all groups with the Ad5F35BMP2-transduced cells irrespective of the presence or absence of a carrier. The presence of a carrier resulted in osteogenesis limited to the implantation site, and was most pronounced for solid (sponge, composite) carriers. The physical characteristics of the carrier determined the new bone spatial distribution at the site. Solid carriers reduced the clearance of AD5F35-transduced cells by the host immune cells. Adenoviral ex vivo BMP2 gene therapy in combination with collagen carriers with distinct physical characteristics offers the prospects of adjusting this approach to optimally match the specific therapeutic requirements.