Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Insights ; 15: 11786361221130313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329710

RESUMO

A serious concern of public-health proportion is rising from the carriage of antibiotic resistance determinant in Non-Lactose-Fermenting Bacteria and acquisition of virulence particularly in strains that are not routinely isolated or screened from common food animals. This study investigated the resistance profile and pathogenicity potential of selected Non-Lactose-Fermenting Bacteria isolated from 18 poultry farms. In total, we investigated the antibiotic susceptibility patterns of 25 Pseudomonas lactis and 71 Pseudomonas paralactis isolated from chicken faeces by testing them against 12 antibiotics. Resistance genes borne by the selected isolates were screened by sequencing the genetic location of resistance determinants was determined by plasmid curing. The virulence potential of the studied strains was determined phenotypically. Pseudomonas lactis isolates were mostly resistant to azetronam (93%), followed by trimethoprim (90%), cefotaxime (86%) and then amoxicillin/clavulanic acid (57%), while Pseudomonas paralactis. isolates were most resistant to azetronam (94%), trimethoprim (90%), cefepime (80%), piperacillin (75%) and amoxicillin/clavulanic acid (70%). The Multiple Antibiotic Resistance Index of Pseudomonas lactis and Pseudomonas paralactis isolates respectively ranged from 0.0 to 0.8 and 0.0 to 0.9. Polymerase Chain Reaction revealed the presence of antibiotic resistance factors such as blaCTX-M, qnrS, aac (6')-lb-cr and blaSHV while plasmid curing revealed carriages of resistance determinants on Resistance Plasmid. Moreover, virulence enzymes such as alkaline protease and phospholipase C were found in 3% and 12% of Pseudomonas paralactis and Pseudomonas lactis, respectively. This study reports the first occurrence of Pseudomonas lactis and Pseudomonas paralactis strains from chicken faeces, and their antimicrobial resistance and relative virulence suggest the encroachment of food animals by the under-studied non-lactose-fermenting bacteria that should alert public health concerns.

2.
Microbiol Insights ; 7: 25-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452698

RESUMO

The influence of environmental chemicals including arsenic, a type 1 carcinogen, on the composition and function of the human-associated microbiota is of significance in human health and disease. We have developed a suite of bioinformatics and visual analytics methods to evaluate the availability (presence or absence) and abundance of functional annotations in a microbial genome for seven Pfam protein families: As(III)-responsive transcriptional repressor (ArsR), anion-transporting ATPase (ArsA), arsenical pump membrane protein (ArsB), arsenate reductase (ArsC), arsenical resistance operon transacting repressor (ArsD), water/glycerol transport protein (aquaporins), and universal stress protein (USP). These genes encode function for sensing and/or regulating arsenic content in the bacterial cell. The evaluative profiling strategy was applied to 3,274 genomes from which 62 genomes from 18 genera were identified to contain genes for the seven protein families. Our list included 12 genomes in the Human Microbiome Project (HMP) from the following genera: Citrobacter, Escherichia, Lactobacillus, Providencia, Rhodococcus, and Staphylococcus. Gene neighborhood analysis of the arsenic resistance operon in the genome of Bacteroides thetaiotaomicron VPI-5482, a human gut symbiont, revealed the adjacent arrangement of genes for arsenite binding/transfer (ArsD) and cytochrome c biosynthesis (DsbD_2). Visual analytics facilitated evaluation of protein annotations in 367 genomes in the phylum Bacteroidetes identified multiple genomes in which genes for ArsD and DsbD_2 were adjacently arranged. Cytochrome c, produced by a posttranslational process, consists of heme-containing proteins important for cellular energy production and signaling. Further research is desired to elucidate arsenic resistance and arsenic-mediated cellular energy production in the Bacteroidetes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa