Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 88(4): 697-707, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26180047

RESUMO

Neuronal α4ß2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(ß2)(2) receptor subpopulation was discovered. In particular, three residues, H142, Q150, and T152, were demonstrated to be involved in the distinct pharmacology of the α4-α4 versus α4-ß2 binding sites. To obtain insight into the three-dimensional structure of the α4-α4 binding site, a surrogate protein reproducing α4-α4 binding characteristics was constructed by introduction of three point mutations, R104H, L112Q, and M114T, into the binding pocket of Lymnaea stagnalis acetylcholine-binding protein (Ls-AChBP). Cocrystallization with two agonists possessing distinct pharmacologic profiles, NS3920 [1-(6-bromopyridin-3-yl)-1,4-diazepane] and NS3573 [1-(5-ethoxypyridin-3-yl)-1,4-diazepane], highlights the roles of the three residues in determining binding affinities and functional properties of ligands at the α4-α4 interface. Confirmed by mutational studies, our structures suggest a unique ligand-specific role of residue H142 on the α4 subunit. In the cocrystal structure of the mutated Ls-AChBP with the high-efficacy ligand NS3920, the corresponding histidine forms an intersubunit bridge that reinforces the ligand-mediated interactions between subunits. The structures further reveal that the binding site residues gain different and ligand-dependent interactions that could not be predicted based on wild-type Ls-AChBP structures in complex with the same agonists. The results show that an unprecedented correlation between binding in engineered AChBPs and functional receptors can be obtained and provide new opportunities for structure-based design of drugs targeting specific nicotinic acetylcholine receptor interfaces.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Mimetismo Molecular/fisiologia , Engenharia de Proteínas/métodos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Humanos , Insetos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Xenopus laevis
2.
J Biol Chem ; 289(36): 24911-21, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24982426

RESUMO

Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive modulator that targets the α4-α4 interface of α4ß2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4ß2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface agonist (acetylcholine)-binding site. Analysis of contacts to residues known to govern agonist binding and function suggests that modulation occurs by an agonist-like mechanism. Selectivity for α4-α4 over α4-ß2 interfaces is determined mainly by steric restrictions from Val-136 on the ß2-subunit and favorable interactions between NS9283 and His-142 at the complementary side of α4. In the concentration ranges where modulation is observed, its selectivity prevents NS9283 from directly activating nAChRs because activation requires coordinated action from more than one interface. However, we demonstrate that in a mutant receptor with one natural and two engineered α4-α4 interfaces, NS9283 is an agonist. Modulation via extracellular binding sites is well known for benzodiazepines acting at γ-aminobutyric acid type A receptors. Like NS9283, benzodiazepines increase the apparent agonist potency with a minimal effect on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4ß2 nAChRs.


Assuntos
Agonistas Nicotínicos/farmacologia , Oxidiazóis/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Células HEK293 , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Estrutura Molecular , Mutação , Agonistas Nicotínicos/química , Oócitos/metabolismo , Oócitos/fisiologia , Oxidiazóis/química , Ligação Proteica , Estrutura Terciária de Proteína , Piridinas/química , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Xenopus laevis
3.
J Biol Chem ; 288(50): 35997-6006, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24169695

RESUMO

Positive allosteric modulators (PAMs) of α4ß2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4ß2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4ß2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4ß2 stoichiometries (2α:3ß and 3α:2ß). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2ß receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2ß receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2ß receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4ß2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.


Assuntos
Cisteína , Indóis/metabolismo , Indóis/farmacologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Oxidiazóis/metabolismo , Oxidiazóis/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Acetilcolina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Sinergismo Farmacológico , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
4.
Nat Struct Mol Biol ; 27(1): 62-70, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873305

RESUMO

ABCB4 is an ATP-binding cassette transporter that extrudes phosphatidylcholine into the bile canaliculi of the liver. Its dysfunction or inhibition by drugs can cause severe, chronic liver disease or drug-induced liver injury. We determined the cryo-EM structure of nanodisc-reconstituted human ABCB4 trapped in an ATP-bound state at a resolution of 3.2 Å. The nucleotide binding domains form a closed conformation containing two bound ATP molecules, but only one of the ATPase sites contains bound Mg2+. The transmembrane domains adopt a collapsed conformation at the level of the lipid bilayer, but we observed a large, hydrophilic and fully occluded cavity at the level of the cytoplasmic membrane boundary, with no ligand bound. This indicates a state following substrate release but prior to ATP hydrolysis. Our results rationalize disease-causing mutations in human ABCB4 and suggest an 'alternating access' mechanism of lipid extrusion, distinct from the 'credit card swipe' model of other lipid transporters.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/ultraestrutura , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Hidrólise , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
5.
Neuropharmacology ; 92: 135-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25595102

RESUMO

The nicotinic acetylcholine receptor α4ß2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (α4)2(ß2)3 and (α4)3(ß2)2. While these are similar in many aspects, the (α4)3(ß2)2 stoichiometry differs by harboring a third orthosteric acetylcholine binding site located at the α4-α4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known. The present study was therefore aimed at determining binding affinities of nicotinic ligands to the α4-α4 interface. Given that epibatidine shows large functional potency differences at α4-ß2 vs. α4-α4 interfaces, biphasic binding properties would be expected at (α4)3(ß2)2 receptors. However, standard saturation binding experiments with [(3)H]epibatidine did not reveal biphasic binding under the conditions utilized. Therefore, an engineered ß2 construct (ß2(HQT)), which converts the ß(-) face to resemble that of an α4(-) face, was utilized to create (α4)3(ß2(HQT))2 receptors harboring three α4-α4 interfaces. With this receptor, low affinity binding of epibatidine with a Kd of ∼5 nM was observed in sharp contrast to a Kd value of ∼10 pM observed for wild-type receptors. A strong correlation between binding affinities at the (α4)3(ß2(HQT))2 receptor and functional potencies at the wild-type receptor of a range of nicotinic ligands highlighted the validity of using the mutational approach. Finally, large differences in activities at α4-ß2 vs. α4-α4 interfaces were observed for structurally related agonists underscoring the need for establishing all binding parameters of compounds at α4ß2 receptors.


Assuntos
Acetilcolina/metabolismo , Modelos Moleculares , Agonistas Nicotínicos/farmacologia , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Azepinas/farmacocinética , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Relação Dose-Resposta a Droga , Estimulação Elétrica , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Nicotina/farmacologia , Oócitos , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Piridinas/farmacocinética , Receptores Nicotínicos/genética , Transfecção , Trítio/farmacocinética , Xenopus laevis
6.
PLoS One ; 9(3): e91232, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637639

RESUMO

Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4ß2 nAChR, i.e. the interfaces α4(+)ß2(-) and α4(+)α4(-). Mutation to alanine (W82A on the ß2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4ß2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.


Assuntos
Acetilcolina/química , Proteínas de Transporte/química , Neurotransmissores/química , Receptores Nicotínicos/química , Acetilcolina/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Potenciais Evocados/genética , Modelos Moleculares , Conformação Molecular , Mutação , Neurotransmissores/metabolismo , Oócitos/metabolismo , Ligação Proteica , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa