Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 40(15): 2976-2992, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32152201

RESUMO

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.


Assuntos
Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Perda Auditiva Neurossensorial/genética , Fator de Crescimento de Hepatócito/genética , Crista Neural/crescimento & desenvolvimento , Estria Vascular/patologia , Animais , Contagem de Células , Orelha Interna/anormalidades , Feminino , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/patologia , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/patologia , Sondas RNA
2.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830090

RESUMO

Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17ß-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.


Assuntos
Cóclea , Estradiol/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Perda Auditiva Provocada por Ruído , Animais , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Feminino , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Camundongos , Ovariectomia
3.
Hum Mol Genet ; 27(5): 780-798, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293958

RESUMO

The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.


Assuntos
Perda Auditiva/genética , Infertilidade Masculina/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas Tirosina Fosfatases/genética , Animais , Sistemas CRISPR-Cas , Feminino , Estudos de Associação Genética , Perda Auditiva/fisiopatologia , Humanos , Masculino , Camundongos Mutantes , Linhagem , Monoéster Fosfórico Hidrolases/química , Proteínas Tirosina Fosfatases/metabolismo , Testículo/fisiopatologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Hum Mutat ; 40(2): 162-176, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461122

RESUMO

KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.


Assuntos
Surdez/genética , Síndrome de Jervell-Lange Nielsen/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Síndrome de Romano-Ward/genética , Adolescente , Adulto , Códon sem Sentido/genética , Surdez/patologia , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Heterozigoto , Homozigoto , Humanos , Síndrome de Jervell-Lange Nielsen/patologia , Síndrome do QT Longo , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Síndrome de Romano-Ward/patologia , Adulto Jovem
5.
Neurobiol Learn Mem ; 158: 9-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30630041

RESUMO

The peptide transmitter N-acetylaspartylglutamate (NAAG) and its receptor, the type 3 metabotropic glutamate receptor (mGluR3, GRM3), are prevalent and widely distributed in the mammalian nervous system. Drugs that inhibit the inactivation of synaptically released NAAG have procognitive activity in object recognition and other behavioral models. These inhibitors also reverse cognitive deficits in animal models of clinical disorders. Antagonists of mGluR3 block these actions and mice that are null mutant for this receptor are insensitive to the actions of these procognitive drugs. A positive allosteric modulator of this receptor also has procognitive activity. While some data suggest that drugs acting on mGluR3 achieve their procognitive action by increasing arousal during acquisition training, exploration of the procognitive efficacy of NAAG is in its early stages and thus substantial opportunities exist to define the breadth and nature of this activity.


Assuntos
Cognição/fisiologia , Dipeptídeos/fisiologia , Glutamato Carboxipeptidase II/fisiologia , Memória/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Cognição/efeitos dos fármacos , Glutamato Carboxipeptidase II/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
6.
Neurochem Res ; 42(9): 2646-2657, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28285415

RESUMO

Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications.


Assuntos
Intoxicação Alcoólica/metabolismo , Doença de Alzheimer/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Memória/fisiologia , Receptores de Glutamato Metabotrópico/deficiência , Ureia/análogos & derivados , Intoxicação Alcoólica/genética , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/genética , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Ureia/farmacologia
7.
Hum Mol Genet ; 23(18): 4960-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24847002

RESUMO

The transactivation DNA-binding protein (TDP)-43 binds to thousands of mRNAs, but the functional outcomes of this binding remain largely unknown. TDP-43 binds to Park2 mRNA, which expresses the E3 ubiquitin ligase parkin. We previously demonstrated that parkin ubiquitinates TDP-43 and facilitates its translocation from the nucleus to the cytoplasm. Here we used brain penetrant tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib and showed that they reduce the level of nuclear TDP-43, abrogate its effects on neuronal loss, and reverse cognitive and motor decline. Nilotinib decreased soluble and insoluble TDP-43, while bosutinib did not affect the insoluble level. Parkin knockout mice exhibited high levels of endogenous TDP-43, while nilotinib and bosutinib did not alter TDP-43, underscoring an indispensable role for parkin in TDP-43 sub-cellular localization. These data demonstrate a novel functional relationship between parkin and TDP-43 and provide evidence that TKIs are potential therapeutic candidates for TDP-43 pathologies.


Assuntos
Cognição/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Destreza Motora/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Ubiquitina-Proteína Ligases/metabolismo , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Otol Neurotol ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39439049

RESUMO

HYPOTHESIS: Hearing instability in Slc26a4-insufficiency mice may be due to differential expression of genes related to ion homeostasis and activated macrophages. BACKGROUND: Hearing instability (HI) disorders, defined by either hearing fluctuation or sudden loss, remain incompletely understood. Recent studies have described a Slc26a4 (pendrin)-insufficiency mouse model (DE17.5) that offers a genetically driven model for HI, although deep audiometric and immunohistologic phenotyping of this model remains poorly characterized. METHODS: Homozygous DE17.5 mice with (F) and without (NF) HI were delineated by serial auditory brainstem responses (ABR) between postnatal days 30 and 60 and compared with adult phenotypically wild-type Slc26a4-heterozygous controls without evidence of HI (Het). HI was defined as a change in threshold of at least 15 dB in at least two frequencies or at least 20 dB in at least one frequency from the previous week. Stria vascularis (SV) cell type-specific gene expression, endolymphatic hydrops (EH), endocochlear potential (EP), and macrophage activation were analyzed and compared between the cohorts. RESULTS: F mice demonstrated significant reductions in the expression of cell type-specific genes related to ion homeostasis and increased macrophage activation within the SV compared with NF and Het cohorts. Both F and NF DE17.5 homozygous mice demonstrated reductions in EP and increased EH compared with the Het cohort. CONCLUSIONS: Deep phenotyping of DE17.5 mice demonstrates changes in EP and EH compared with control; however, the HI phenotype was associated with differential ion homeostasis gene expression and increased macrophage activation in the SV. This provides potential further insights into the underlying pathogenesis and possible immunologic contributions of HI in humans.

9.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712156

RESUMO

Summary: The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/ß-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance: Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights: - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.

10.
Sci Rep ; 14(1): 3038, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321040

RESUMO

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.


Assuntos
Orelha Interna , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Camundongos , Estria Vascular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cóclea/metabolismo , Orelha Interna/metabolismo , Camundongos Transgênicos , Mamíferos/metabolismo
11.
Genes (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062623

RESUMO

Deafness in vertebrates is associated with variants of hundreds of genes. Yet, many mutant genes causing rare forms of deafness remain to be discovered. A consanguineous Pakistani family segregating nonsyndromic deafness in two sibships were studied using microarrays and exome sequencing. A 1.2 Mb locus (DFNB128) on chromosome 5q11.2 encompassing six genes was identified. In one of the two sibships of this family, a novel homozygous recessive variant NM_005921.2:c.4460G>A p.(Arg1487His) in the kinase domain of MAP3K1 co-segregated with nonsyndromic deafness. There are two previously reported Map3k1-kinase-deficient mouse models that are associated with recessively inherited syndromic deafness. MAP3K1 phosphorylates serine and threonine and functions in a signaling pathway where pathogenic variants of HGF, MET, and GAB1 were previously reported to be associated with human deafness DFNB39, DFNB97, and DFNB26, respectively. Our single-cell transcriptome data of mouse cochlea mRNA show expression of Map3k1 and its signaling partners in several inner ear cell types suggesting a requirement of wild-type MAP3K1 for normal hearing. In contrast to dominant variants of MAP3K1 associated with Disorders of Sex Development 46,XY sex-reversal, our computational modeling of the recessive substitution p.(Arg1487His) predicts a subtle structural alteration in MAP3K1, consistent with the limited phenotype of nonsyndromic deafness.


Assuntos
Surdez , Genes Recessivos , MAP Quinase Quinase Quinase 1 , Linhagem , Animais , Camundongos , Humanos , Feminino , Masculino , Surdez/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Modelos Animais de Doenças , Perda Auditiva/genética , Sequenciamento do Exoma , Consanguinidade
12.
medRxiv ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39417118

RESUMO

The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid on the intracochlear FBR and electrical impedance post-implantation in a murine model and human subjects. The left ears of CX3CR1 +/GFP Thy1 +/YFP (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurement of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggest that dexamethasone eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.

13.
J Biol Chem ; 287(26): 21773-82, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22570482

RESUMO

The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.


Assuntos
Dopamina/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Ácido Glutâmico/química , Núcleo Accumbens/metabolismo , Fenciclidina/farmacologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/fisiopatologia , Animais , Antipsicóticos/farmacologia , Comportamento Animal , Modelos Animais de Doenças , Dopamina/metabolismo , Glutamato Carboxipeptidase II/química , Ácido Glutâmico/metabolismo , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico
14.
Eur J Neurosci ; 37(1): 118-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23134476

RESUMO

Immunohistochemical studies previously revealed the presence of the peptide transmitter N-acetylaspartylglutamate (NAAG) in spinal motor neurons, axons and presumptive neuromuscular junctions (NMJs). At synapses in the central nervous system, NAAG has been shown to activate the type 3 metabotropic glutamate receptor (mGluR3) and is inactivated by an extracellular peptidase, glutamate carboxypeptidase II. The present study tested the hypothesis that NAAG meets the criteria for classification as a co-transmitter at the vertebrate NMJ. Confocal microscopy confirmed the presence of NAAG immunoreactivity and extended the resolution of the peptide's location in the lizard (Anolis carolinensis) NMJ. NAAG was localised to a presynaptic region immediately adjacent to postsynaptic acetylcholine receptors. NAAG was depleted by potassium-induced depolarisation and by electrical stimulation of motor axons. The NAAG receptor, mGluR3, was localised to the presynaptic terminal consistent with NAAG's demonstrated role as a regulator of synaptic release at central synapses. In contrast, glutamate receptors, type 2 metabotropic glutamate receptor (mGluR2) and N-methyl-d-aspartate, were closely associated with acetylcholine receptors in the postsynaptic membrane. Glutamate carboxypeptidase II, the NAAG-inactivating enzyme, was identified exclusively in perisynaptic glial cells. This localisation was confirmed by the loss of immunoreactivity when these cells were selectively eliminated. Finally, electrophysiological studies showed that exogenous NAAG inhibited evoked neurotransmitter release by activating a group II metabotropic glutamate receptor (mGluR2 or mGluR3). Collectively, these data support the conclusion that NAAG is a co-transmitter at the vertebrate NMJ.


Assuntos
Dipeptídeos/farmacologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Junção Neuromuscular/química , Neurotransmissores/farmacologia , Animais , Dipeptídeos/análise , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamato Carboxipeptidase II/análise , Imuno-Histoquímica , Lagartos , Neurônios Motores/química , Neurônios Motores/fisiologia , N-Metilaspartato/farmacologia , Junção Neuromuscular/fisiologia , Potássio/farmacologia , Terminações Pré-Sinápticas/química , Receptores Colinérgicos/análise , Receptores de Glutamato Metabotrópico/análise
15.
Otol Neurotol ; 44(10): 1057-1065, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733989

RESUMO

HYPOTHESIS: Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND: MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS: Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS: Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION: The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.


Assuntos
Doença de Meniere , Humanos , Doença de Meniere/patologia , Cóclea/patologia , Estria Vascular/patologia , Osso Temporal/patologia , Homeostase , Membro 2 da Família 12 de Carreador de Soluto
16.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154552

RESUMO

Endocochlear potential, which is generated by the stria vascularis, is essential to maintain an environment conducive to appropriate hair cell mechanotransduction and ultimately hearing. Pathologies of the stria vascularis can result in a decreased hearing. Dissection of the adult stria vascularis allows for focused single-nucleus capture and subsequent single-nucleus sequencing and immunostaining. These techniques are used to study stria vascularis pathophysiology at the single-cell level. Single-nucleus sequencing can be used in the setting of transcriptional analysis of the stria vascularis. Meanwhile, immunostaining continues to be useful in identifying specific populations of cells. Both methods require proper stria vascularis dissection as a prerequisite, which can prove to be technically challenging.


Assuntos
Mecanotransdução Celular , Estria Vascular , Camundongos , Animais , Estria Vascular/patologia , Estria Vascular/fisiologia , Audição , Cóclea/fisiologia
17.
Res Sq ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37886521

RESUMO

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.

18.
Mol Pain ; 8: 67, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971334

RESUMO

BACKGROUND: Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. RESULTS: NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. CONCLUSION: These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Inflamação/enzimologia , Substância Cinzenta Periaquedutal/enzimologia , Analgésicos/uso terapêutico , Animais , Formaldeído/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Bulbo/enzimologia , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
19.
J Neurochem ; 118(4): 490-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21644997

RESUMO

A substantial body of data was reported between 1984 and 2000 demonstrating that the neuropeptide N-acetylaspartylglutamate (NAAG) not only functions as a neurotransmitter but also is the third most prevalent transmitter in the mammalian nervous system behind glutamate and GABA. By 2005, this conclusion was validated further through a series of studies in vivo and in vitro. The primary enzyme responsible for the inactivation of NAAG following its synaptic release had been cloned, characterized and knocked out. Potent inhibitors of this enzyme were developed and their efficacy has been extensively studied in a series of animal models of clinical conditions, including stroke, peripheral neuropathy, traumatic brain injury, inflammatory and neuropathic pain, cocaine addiction, and schizophrenia. Considerable progress also has been made in defining further the mechanism of action of these peptidase inhibitors in elevating synaptic levels of NAAG with the consequent inhibition of transmitter release via the activation of pre-synaptic metabotropic glutamate receptor 3 by this peptide. Very recent discoveries include identification of two different nervous system enzymes that mediate the synthesis of NAAG from N-acetylaspartate and glutamate and the finding that one of these enzymes also mediates the synthesis of a second member of the NAAG family of neuropeptides, N-acetylaspartylglutamylglutamate.


Assuntos
Dipeptídeos/fisiologia , Neuropeptídeos/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Lesões Encefálicas/tratamento farmacológico , Dipeptídeos/genética , Dipeptídeos/metabolismo , Glutamato Carboxipeptidase II/antagonistas & inibidores , Humanos , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neurotransmissores/fisiologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Esquizofrenia/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/terapia
20.
Adv Clin Exp Med ; 30(10): 1051-1056, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34610218

RESUMO

BACKGROUND: The radiofrequency impedance measurement is one of the basic parameters monitored during ablation procedures. An abrupt rise in impedance is often observed corresponding to a steam pop. The exact correlation between the occurrence of steam pop and subsequent rise in impedance has not been experimentally described so far. OBJECTIVES: To evaluate the relationship between steam pop occurrence and impedance fluctuations observed during radiofrequency ablation (RFA). MATERIAL AND METHODS: Porcine heart tissue specimens were appropriately prepared and placed in an experimental setup connected to electrophysiological equipment with 3D anatomical mapping facilities. The RFA lesions were performed in standardized conditions with the use of contact force measurement-enabled open irrigation ablation catheter (ThermoCool SmartTouch™, 3.5 mm tip, F-J curvature; Biosense Webster, Irvine, USA) in the power-control mode. The RFA delivery was stopped when the steam pop occurred. Time taken for the steam pop to occur and to the subsequent abrupt impedance rise was recorded, along with the impedance fluctuations during an application. RESULTS: In total, 25 experimental radiofrequency (RF) current deliveries ended up with steam pops, which occurred after 30-60 s. The time recorded from the beginning of the application up to the steam pop was shorter if increased power was applied (35 W compared to 30 W: 41.5 ±9.9 s compared to 49.9 ±8.2 s; p = 0.046). During all RF applications, impedance significantly but gradually decreased from 122.9 ±7.9 Ω to 87.5 ±3.6 Ω (p < 0.001) with a mean drop rate of 0.8 ±0.2 Ω/s. During all experiments, the abrupt and significant impedance increase (8.2 ±2.0 Ω, p < 0.001) was observed always after steam pop occurrence (207.4 ±155.9 ms). CONCLUSIONS: During RF current delivery which ended up with steam pop, an abrupt impedance increase was always registered after the occurrence of this phenomenon. Therefore, the impedance rise observed during steam popping cannot be used for its prediction. The time to steam pop was shorter for applications with increased power but not with greater contact force.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Animais , Impedância Elétrica , Desenho de Equipamento , Coração , Vapor , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa