RESUMO
All cyanobacteria and some chemoautotrophic bacteria fix CO2 into sugars using specialized proteinaceous compartments called carboxysomes. Carboxysomes enclose the enzymes Rubisco and carbonic anhydrase inside a layer of shell proteins to increase the CO2 concentration for efficient carbon fixation by Rubisco. In the âº-carboxysome lineage, a disordered and highly repetitive protein named CsoS2 is essential for carboxysome formation and function. Without it, the bacteria require high CO2 to grow. How does a protein predicted to be lacking structure serve as the architectural scaffold for such a vital cellular compartment? In this study, we identify key residues present in the repeats of CsoS2, VTG and Y, which are necessary for building functional âº-carboxysomes in vivo. These highly conserved and repetitive residues contribute to the multivalent binding interaction and phase separation behavior between CsoS2 and shell proteins. We also demonstrate 3-component reconstitution of CsoS2, Rubisco, and shell proteins into spherical condensates and show the utility of reconstitution as a biochemical tool to study carboxysome biogenesis. The precise self-assembly of thousands of proteins is crucial for carboxysome formation, and understanding this process could enable their use in alternative biological hosts or industrial processes as effective tools to fix carbon.
Assuntos
Proteínas de Bactérias , Proteínas Intrinsicamente Desordenadas , Ribulose-Bifosfato Carboxilase , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Motivos de Aminoácidos , Ciclo do Carbono , Organelas/metabolismoRESUMO
Cyanobacteria rely on CO2-concentrating mechanisms (CCMs) to grow in today's atmosphere (0.04% CO2). These complex physiological adaptations require ≈15 genes to produce two types of protein complexes: inorganic carbon (Ci) transporters and 100+ nm carboxysome compartments that encapsulate rubisco with a carbonic anhydrase (CA) enzyme. Mutations disrupting any of these genes prohibit growth in ambient air. If any plausible ancestral form-i.e., lacking a single gene-cannot grow, how did the CCM evolve? Here, we test the hypothesis that evolution of the bacterial CCM was "catalyzed" by historically high CO2 levels that decreased over geologic time. Using an E. coli reconstitution of a bacterial CCM, we constructed strains lacking one or more CCM components and evaluated their growth across CO2 concentrations. We expected these experiments to demonstrate the importance of the carboxysome. Instead, we found that partial CCMs expressing CA or Ci uptake genes grew better than controls in intermediate CO2 levels (≈1%) and observed similar phenotypes in two autotrophic bacteria, Halothiobacillus neapolitanus and Cupriavidus necator. To understand how CA and Ci uptake improve growth, we model autotrophy as colimited by CO2 and HCO3-, as both are required to produce biomass. Our experiments and model delineated a viable trajectory for CCM evolution where decreasing atmospheric CO2 induces an HCO3- deficiency that is alleviated by acquisition of CA or Ci uptake, thereby enabling the emergence of a modern CCM. This work underscores the importance of considering physiology and environmental context when studying the evolution of biological complexity.
Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Escherichia coli/genética , Bactérias , Transporte Biológico , Anidrases Carbônicas/genéticaRESUMO
Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.
Assuntos
Proteínas de Bactérias , Anidrases Carbônicas , Proteínas de Bactérias/química , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Peptídeos/metabolismo , Anidrases Carbônicas/metabolismo , Organelas/metabolismoRESUMO
Rubisco is the primary carboxylase of the Calvin cycle, the most abundant enzyme in the biosphere, and one of the best-characterized enzymes. On the basis of correlations between Rubisco kinetic parameters, it is widely posited that constraints embedded in the catalytic mechanism enforce trade-offs between CO2 specificity, SC/O, and maximum carboxylation rate, kcat,C. However, the reasoning that established this view was based on data from ≈20 organisms. Here, we re-examine models of trade-offs in Rubisco catalysis using a data set from ≈300 organisms. Correlations between kinetic parameters are substantially attenuated in this larger data set, with the inverse relationship between kcat,C and SC/O being a key example. Nonetheless, measured kinetic parameters display extremely limited variation, consistent with a view of Rubisco as a highly constrained enzyme. More than 95% of kcat,C values are between 1 and 10 s-1, and no measured kcat,C exceeds 15 s-1. Similarly, SC/O varies by only 30% among Form I Rubiscos and <10% among C3 plant enzymes. Limited variation in SC/O forces a strong positive correlation between the catalytic efficiencies (kcat/KM) for carboxylation and oxygenation, consistent with a model of Rubisco catalysis in which increasing the rate of addition of CO2 to the enzyme-substrate complex requires an equal increase in the O2 addition rate. Altogether, these data suggest that Rubisco evolution is tightly constrained by the physicochemical limits of CO2/O2 discrimination.
Assuntos
Modelos Biológicos , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Cinética , Oxigênio/metabolismo , TermodinâmicaRESUMO
Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.
Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Óptica e Fotônica , Processos FotoquímicosRESUMO
Applications of charge detection mass spectrometry (CDMS) for measuring the masses of large molecules, macromolecular complexes, and synthetic polymers that are too large or heterogeneous for conventional mass spectrometry measurements are made possible by weighing individual ions in order to avoid interferences between ions. Here, a new multiplexing method that makes it possible to measure the masses of many ions simultaneously in CDMS is demonstrated. Ions with a broad range of kinetic energies are trapped. The energy of each ion is obtained from the ratio of the intensity of the fundamental to the second harmonic frequencies of the periodic trapping motion making it possible to measure both the m/ z and charge of each ion. Because ions with the exact same m/ z but with different energies appear at different frequencies, the probability of ion-ion interference is significantly reduced. We show that the measured mass of a protein complex consisting of 16 protomers, RuBisCO (517 kDa), is not affected by the number of trapped ions with up to 21 ions trapped simultaneously in these experiments. Ion-ion interactions do not affect the ion trapping lifetime up to 1 s, and there is no influence of the number of ions on the measured charge-state distribution of bovine serum albumin (66.5 kDa), indicating that ion-ion interactions do not adversely affect any of these measurements. Over an order of magnitude gain in measurement speed over single ion analysis is demonstrated, and significant additional gains are expected with this multi-ion measurement method.
RESUMO
The encapsulation of enzymes and other proteins within a proteinaceous shell has been observed in many bacteria and archaea, but the function and utility of many such compartments are enigmatic. Efforts to study these functions have been complicated by the size and complexity of traditional protein compartments. One potential system for investigating the effect of compartmentalization is encapsulin, a large and newly discovered class of protein shells that are typically composed of two proteins: a protomer that assembles into the icosahedral shell and a cargo protein packaged inside. Encapsulins are some of the simplest known protein shell systems and readily self-assemble in vivo. Systematic characterization of the effects of compartmentalization requires the ability to load a wide range of cargo proteins. Here, we demonstrate that foreign cargo can be loaded into the encapsulin from Thermotoga maritima both in vivo and in vitro by fusion of the cargo protein with a short C-terminal peptide present in the native cargo. To facilitate biochemical characterization, we also develop a simple and rapid purification protocol and demonstrate the thermal and pH stability of the shell. Efforts to study the biophysical effects of protein encapsulation have been problematic in complex compartments, but the simplicity of assembling and loading encapsulin makes it an ideal system for future experiments exploring the effects of encapsulation on proteins.
Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Peptídeos/metabolismo , Peroxidases/metabolismo , Proteínas Recombinantes/metabolismo , Thermotoga maritima/metabolismo , Dicroísmo Circular , Técnicas In Vitro , Modelos MolecularesRESUMO
Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional (13)C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a (13)C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh ß-strand in gating proton transfer from bulk solution to the buried chromophore.
Assuntos
Proteínas de Fluorescência Verde/química , Isótopos de Carbono , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Prótons , Espectrometria de FluorescênciaRESUMO
BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Assuntos
Ecossistema , Água Subterrânea , Bactérias/genética , Bactérias/metabolismo , Sulfetos/metabolismo , Oxirredução , Água Subterrânea/microbiologia , Enxofre/metabolismo , Biofilmes , Hidrogênio/metabolismo , FilogeniaRESUMO
Rubisco is the primary CO2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO2 concentrations, we inferred enzyme velocity and CO2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.
RESUMO
Despite the importance of microcompartments in prokaryotic biology and bioengineering, structural heterogeneity has prevented a complete understanding of their architecture, ultrastructure, and spatial organization. Here, we employ cryo-electron tomography to image α-carboxysomes, a pseudo-icosahedral microcompartment responsible for carbon fixation. We have solved a high-resolution subtomogram average of the Rubisco cargo inside the carboxysome, and determined the arrangement of the enzyme. We find that the H. neapolitanus Rubisco polymerizes in vivo, mediated by the small Rubisco subunit. These fibrils can further pack to form a lattice with six-fold pseudo-symmetry. This arrangement preserves freedom of motion and accessibility around the Rubisco active site and the binding sites for two other carboxysome proteins, CsoSCA (a carbonic anhydrase) and the disordered CsoS2, even at Rubisco concentrations exceeding 800 µM. This characterization of Rubisco cargo inside the α-carboxysome provides insight into the balance between order and disorder in microcompartment organization.
Assuntos
Anidrases Carbônicas , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Diffusion of biological nanoparticles in solution impedes our ability to continuously monitor individual particles and measure their physical and chemical properties. To overcome this, we previously developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which uses scattering to localize a particle and applies electrokinetic forces that counteract Brownian motion, thus enabling extended observation. Here we present an improved ISABEL trap that incorporates a near-infrared scatter illumination beam and rapidly interleaves 405 and 488 nm fluorescence excitation reporter beams. With the ISABEL trap, we monitored the internal redox environment of individual carboxysomes labeled with the ratiometric redox reporter roGFP2. Carboxysomes widely vary in scattering contrast (reporting on size) and redox-dependent ratiometric fluorescence. Furthermore, we used redox sensing to explore the chemical kinetics within intact carboxysomes, where bulk measurements may contain unwanted contributions from aggregates or interfering fluorescent proteins. Overall, we demonstrate the ISABEL trap's ability to sensitively monitor nanoscale biological objects, enabling new experiments on these systems.
Assuntos
Nanopartículas , Difusão , Fluorescência , Movimento (Física) , OxirreduçãoRESUMO
Carboxysomes are self-assembled bacterial microcompartments that facilitate carbon assimilation by colocalizing the enzymes of CO2 fixation within a protein shell. These microcompartments can be highly heterogeneous in their composition and filling, so measuring the mass and loading of an individual carboxysome would allow for better characterization of its assembly and function. To enable detailed and extended characterizations of single nanoparticles in solution, we recently demonstrated an improved interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which tracks the position of a single nanoparticle via its scattering of a near-infrared beam and applies feedback to counteract its Brownian motion. Importantly, the scattering signal can be related to the mass of nanoscale proteinaceous objects, whose refractive indices are well-characterized. We calibrate single-particle scattering cross-section measurements in the ISABEL trap and determine individual carboxysome masses in the 50-400 MDa range by analyzing their scattering cross sections with a core-shell model. We further investigate carboxysome loading by combining mass measurements with simultaneous fluorescence reporting from labeled internal components. This method may be extended to other biological objects, such as viruses or extracellular vesicles, and can be combined with orthogonal fluorescence reporters to achieve precise physical and chemical characterization of individual nanoscale biological objects.
Assuntos
Interferometria , Organelas , Organelas/metabolismo , Dióxido de Carbono/metabolismo , Carbono , Movimento (Física) , Proteínas de Bactérias/metabolismoRESUMO
Bacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based 'organelles' found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25-50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure-function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier-it also plays a significant role in the structure and function of the cargo enzyme.
Assuntos
Proteínas de Bactérias/metabolismo , Dinitrocresóis/metabolismo , Ferritinas/metabolismo , Flavoproteínas/metabolismo , Ferro/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Ferritinas/química , Ferritinas/genética , Flavoproteínas/genética , Modelos Moleculares , Thermotoga maritima/genéticaRESUMO
Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartment in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.
Assuntos
Proteínas de Bactérias/genética , Enxofre/metabolismo , Synechococcus/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Synechococcus/metabolismoRESUMO
Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process. Here, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate that this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate that CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.
Assuntos
Proteínas de Bactérias/química , Halothiobacillus/química , Proteínas Intrinsicamente Desordenadas/química , Organelas/química , Ribulose-Bifosfato Carboxilase/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ciclo do Carbono/fisiologia , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Halothiobacillus/genética , Halothiobacillus/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Organelas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade EstáticaRESUMO
Semisynthetic green fluorescent proteins (GFPs) can be prepared by producing truncated GFPs recombinantly and assembling them with synthetic beta-strands of GFP. The yield from expressing the truncated GFPs is low, and the chromophore is either partially formed or not formed. An alternative method is presented in which full-length proteins are produced recombinantly with a protease site inserted between the structural element to be removed and the rest of the protein. The native peptide can then be replaced by cutting the protease site with trypsin, denaturing in guanidine hydrochloride to disrupt the complex, separating the native peptide from the rest of the protein by size exclusion, and refolding the protein in the presence of a synthetic peptide. We show that this method allows for removal and replacement of the interior chromophore containing helix and that the GFP barrel is capable of inducing chromophore formation in a synthetic interior helix.
Assuntos
Proteínas de Fluorescência Verde/química , Proteínas Recombinantes/síntese química , Proteínas de Fluorescência Verde/síntese química , Peptídeo Hidrolases/genética , Conformação Proteica , Desnaturação Proteica , Renaturação Proteica , Recombinação Genética , Tripsina/metabolismoRESUMO
Bacterial autotrophs often rely on CO2 concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus. Screening revealed that the CCM comprises at least 17 and probably no more than 25 genes, most of which are encoded in 3 operons. Two of these operons (DAB1 and DAB2) contain a two-gene locus that encodes a domain of unknown function (Pfam: PF10070) and a putative cation transporter (Pfam: PF00361). Physiological and biochemical assays demonstrated that these proteins-which we name DabA and DabB, for DABs accumulate bicarbonate-assemble into a heterodimeric complex, which contains a putative ß-carbonic anhydrase-like active site and functions as an energy-coupled inorganic carbon (Ci) pump. Interestingly, DAB operons are found in a diverse range of bacteria and archaea. We demonstrate that functional DABs are present in the human pathogens Bacillus anthracis and Vibrio cholerae. On the basis of these results, we propose that DABs constitute a class of energized Ci pumps and play a critical role in the metabolism of Ci throughout prokaryotic phyla.
Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Proteínas de Transporte/metabolismo , Células Procarióticas/metabolismo , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Bacillus anthracis/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Elementos de DNA Transponíveis/genética , Compostos de Diazônio , Genes Bacterianos/genética , Genes Essenciais , Halothiobacillus/genética , Halothiobacillus/metabolismo , Mutagênese , Óperon , Ácidos Sulfanílicos , Vibrio cholerae/metabolismoRESUMO
Nanomedicine directed at diagnosis and treatment of infections can benefit from innovations that have substantially increased the variety of available multifunctional nanoplatforms. Here, we targeted a spherical, icosahedral viral nanoplatform to a pathogenic, biofilm-forming bacterium, Staphylococcus aureus. Density of binding mediated through specific protein-ligand interactions exceeded the density expected for a planar, hexagonally close-packed array. A multifunctionalized viral protein cage was used to load imaging agents (fluorophore and MRI contrast agent) onto cells. The fluorescence-imaging capability allowed for direct observation of penetration of the nanoplatform into an S. aureus biofilm. These results demonstrate that multifunctional nanoplatforms based on protein cage architectures have significant potential as tools for both diagnosis and targeted treatment of recalcitrant bacterial infections.