Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Agron ; 142: None, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597425

RESUMO

We used the CROPGRO-Soybean model to simulate the production potential of rainfed soybean in northeast Nigeria. Data from ten soybean experiments conducted under optimal conditions in 2016-2018 at Kano and Dambatta in the Sudan savanna (SS) agroecological zone were used to determine the cultivar coefficients and calibrate the model for the varieties TGX 1448-2E and TGX1951-3 F. The model was evaluated with data from four phosphorous response trials conducted at Zaria and Doguwa in the northern Guinea savanna (GS) of Nigeria between 2016 and 2018. Results show that the CROPGRO-Soybean model was able to accurately simulate soybean growth and grain yield with low RMSE and high d-index values. Consequently, the model was used to investigate the rainfed yield potential of the two varieties in 24 sites in northeast Nigeria under different sowing windows using 30-year (1985-2014) weather data. The result shows that soybean can be grown in northeast Nigeria, but yield performance is dependent on location, variety and sowing window. The simulated yield was higher in the SS than in the GS agro-ecozone despite the longer growing period in the later. Low yield was simulated for TGX 1448-2E for most of the sites. The yield of TGX1951-3 F was above a threshold of 1500 kg ha-1 in 5 out of 12 sites in the GS and 7 out of 12 sites in the SS, suggesting that this variety is the most suitable for cultivation in northeast Nigeria. Sowing TGX 1951-3 F can be delayed to July 16 at Gwaskara, Nasarawo Demsa and Tawa in the GS and at Briyel, Lakundum, Jara Dali, Kurbo Gayi, and Mathau in the SS with a low-risk of crop failure. The desired yield will be achieved at Chikala and Puba Vidau with a significantly low risk of crop failure for all sowing windows. The results from this study suggest that the CSM-CROPGRO-Soybean model can be a valuable tool in determining the right variety and sowing window for soybean production in targeted agroecological zones in northeast Nigeria.

2.
Physiol Mol Biol Plants ; 26(2): 317-330, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158137

RESUMO

Dearth of information on extent of genetic variability in cassava limits the genetic improvement of cassava genotypes in Sierra Leone. The aim of this study was to assess the genetic diversity and relationships within 102 cassava genotypes using agro-morphological and single nucleotide polymorphism markers. Morphological classification based on qualitative traits categorized the germplasm into five different groups, whereas the quantitative trait set had four groups. The SNP markers classified the germplasm into three main cluster groups. A total of seven principal components (PCs) in the qualitative and four PCs in the quantitative trait sets accounted for 79.03% and 72.30% of the total genetic variation, respectively. Significant and positive correlations were observed between average yield per plant and harvest index (r = 0.76***), number of storage roots per plant and harvest index (r = 0.33*), height at first branching and harvest index (0.26*), number of storage roots per plant and average yield per plant (r = 0.58*), height at first branching and average yield per plant (r = 0.24*), length of leaf lobe and petiole length (r = 0.38*), number of leaf lobe and petiole length (r = 0.31*), width of leaf lobe and length of leaf lobe (r = 0.36*), number of leaf lobe and length of leaf lobe (r = 0.43*), starch content and dry matter content (r = 0.99***), number of leaf lobe and root dry matter (r = 0.30*), number of leaf lobe and starch content (r = 0.28*), and height at first branching and plant height (r = 0.45**). Findings are useful for conservation, management, short term recommendation for release and genetic improvement of the crop.

3.
Outlook Agric ; 49(4): 286-292, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33239829

RESUMO

Grain legumes are nutritionally important components of smallholder farming systems in sub-Saharan Africa and Asia. Unfortunately, limited access to quality seed of improved varieties at affordable prices due to inadequate seed systems has reduced their contribution to improving nutrition and reducing poverty in these regions. This paper analyses four seed systems case studies: chickpea in Ethiopia and Myanmar; cowpea in Nigeria; and tropical grain legumes in Nigeria, Tanzania and Uganda highlighting outcomes, lessons learned, and the enabling factors which supported the successful innovations. All four case studies highlighted at least some of the following outcomes: increased adoption of improved varieties and area planted; increased productivity and income to farmers; improved market access and growth; and significant national economic benefits. Important lessons were learned including the value of small seed packets to reach many farmers; the value of innovative partnerships; capacity building of value chain actors; and continuity and coherence of funding through Tropical Legumes projects II and III and the recently funded Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project. Successful adoption of innovations depends not just on the right technologies but also on the enabling environment. The case studies clearly showed that market demand was correctly identified, establishment of successful partners and institutional linkages overcame constraints in production and delivery of improved seed to smallholders, and fostered conducive policies supported national seed systems. All were integral to seed system viability and sustainability. It is hoped that these examples will provide potential models for future grain legume seed systems efforts. In addition, the analysis identified a number of areas that require further research.

4.
Plants (Basel) ; 11(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35009071

RESUMO

Knowledge of the genetic structure and diversity of germplasm collections is crucial for sustainable genetic improvement through hybridization programs and rapid adaptation to changing breeding objectives. The objective of this study was to determine the genetic diversity and population structure of 281 International Institute of Tropical Agriculture (IITA) soybean accessions using diversity array technology (DArT) and single nucleotide polymorphism (SNP) markers for the efficient utilization of these accessions. From the results, the SNP and DArT markers were well distributed across the 20 soybean chromosomes. The cluster and principal component analyses revealed the genetic diversity among the 281 accessions by grouping them into two stratifications, a grouping that was also evident from the population structure analysis, which divided the 281 accessions into two distinct groups. The analysis of molecular variance revealed that 97% and 98% of the genetic variances using SNP and DArT markers, respectively, were within the population. Genetic diversity indices such as Shannon's diversity index, diversity and unbiased diversity revealed the diversity among the different populations of the soybean accessions. The SNP and DArT markers used provided similar information on the structure, diversity and polymorphism of the accessions, which indicates the applicability of the DArT marker in genetic diversity studies. Our study provides information about the genetic structure and diversity of the IITA soybean accessions that will allow for the efficient utilization of these accessions in soybean improvement programs, especially in Africa.

5.
Food Energy Secur ; 9(3): e211, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999717

RESUMO

This article evaluates the impact of cowpea market participation on household food security and income in northern Nigeria. Using household survey data from a representative sample of over 1,500 farm households and applying a combination of instrumental variable techniques and dose-response functions, we found that cowpea market participation had a statistically significant positive impact on household food security and income. Cowpea market participation increased food expenditure by 1.6% and household income by 0.7% with a 10 unit increase in the quantity of cowpea sold. These results underscore the importance of cowpea market participation for household food security and income improvement. We also found that selling cowpea to rural and urban traders significantly increased household income, food expenditure, and food security. Results show that selling cowpea to rural and urban traders increased household income by 17% and 13%, respectively. The results point to the need for an enabling policy environment and public infrastructure to enhance market participation of farmers and traders. Public infrastructure investments in the form of feeder road construction and maintenance in the distant villages are encouraged, which in the long run can translate into improved cowpea productivity and welfare of smallholder farmers.

6.
Plant Breed ; 138(4): 487-499, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31787790

RESUMO

Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP-GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large-scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega-initiatives facilitated release of a number of new varieties and also dissemination of on-the-shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics-assisted breeding approaches and rapid generation advancement.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa