Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 56(2): 98-104, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25759514

RESUMO

Reactive hyperemia reflects a compensatory vasodilation response of the local vasculature in ischemic tissue. The purpose of this study is to clarify the mechanism of regulation of this response in gingival circulation by using pharmacological analysis of reactive hyperemia and histochemical analysis of gingival tissue. Application of pressure to the gingiva was used to create temporary ischemia, and gingival blood flow was measured after pressure release. Reactive hyperemia increased in proportion to the duration of pressure. Systemic hemodynamics remained unaffected by the stimulus; therefore, the gingival reactive hyperemia reflected a local adjustment in circulation. Gingival reactive hyperemia was significantly suppressed by nitric oxide (NO) synthase inhibitors, especially the neural NO synthase-selective antagonist 7-nitroindazole, but not by anticholinergic drugs, ß-blockers, or antihistaminergic drugs. Moreover, immunohistochemical staining for neural NO synthase and histochemical staining for NADPH diaphorase activity were both positive in the gingival perivascular region. These histochemical and pharmacological analyses show that reactive hyperemia following pressure release is mediated by NO-induced vasodilation. Furthermore, histochemical analysis strongly suggests that NO originates from nitrergic nerves. Therefore, NO may play an important role in the neural regulation of local circulation in gingival tissue ischemia.

2.
Life Sci ; 74(1): 75-85, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14575814

RESUMO

Using a Langendorff-perfused rat heart preparation and selective electrodes, we determined nitric oxide (NO) and oxygen levels in cardiac tissue. An NO-selective electrode that was calibrated by electron spin resonance (ESR) spectroscopy was inserted into the middle of the myocardium in the left ventricle. Simultaneously, we used an O2-selective electrode to measure the partial pressure of oxygen (pO2) in the perfusate, Krebs-Henseleit (K-H) solution, that was ejected from the heart. After 30 min of aerobic control perfusion, hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion. Under ischemic conditions, with a gradually decreasing pO2, NO detected by an NO-sensitive electrode within the myocardium was gradually increased. The maximum concentration increases in NO and decreases in pO2 during global ischemia were +10.200 +/- 1.223 microM and -58.608 +/- 4.123 mmHg, respectively. NO and pO2 levels both recovered to pre-ischemia baseline values when perfusion was restarted after global ischemia (reperfusion). The presence of Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mM), a NOS inhibitor, prevented ischemia/reperfusion-induced changes in NO. This study shows that an NO-selective electrode that is calibrated by ESR can provide accurate, real-time monitoring of cardiac NO in normal and ischemic myocardium.


Assuntos
Eletrodos , Isquemia Miocárdica/metabolismo , Miocárdio/química , Óxido Nítrico/análise , Animais , Calibragem , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Ratos , Ratos Wistar
3.
Redox Rep ; 7(5): 300-3, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12688514

RESUMO

The possible involvement of nitric oxide (*NO) in the preservation of blood flow to the canine gingiva after compression of gingival tissue was studied. Gingival blood flow, gingival tissue oxygen partial pressure (PO2), external carotid arterial blood pressure and external carotid arterial blood flow were monitored before, during, and after compression of gingival tissue in the presence and absence of the nitric oxide synthase inhibitor, Nomega-nitro-L-arginine-methyl-ester (L-NAME). Compression of gingival tissue resulted in an immediate decrease in gingival blood flow and tissue PO2. After the compression of gingival tissue, hyperemia was observed in the gingiva, which depended on the duration of ischemia. Gingival tissue PO2 slowly recovered during hyperemia. Pretreatment with L-NAME (60 mg/kg, i.a.) significantly suppressed reactive hyperemia in gingival tissue. The L-NAME-suppressed reactive hyperemia was partially reversed by treatment with L-arginine (60 mg/kg, i.a.). In addition, *NO was detected using an *NO selective electrode during interruption of blood flow and during reactive hyperemia in the gingiva. These results suggest that *NO contributes to the vasodilation during reactive hyperemia in gingival tissue, and aids in the maintenance of homeostasis in gingival circulation.


Assuntos
Isquemia , Óxido Nítrico/fisiologia , Anestesia , Animais , Cães , Eletroquímica , Inibidores Enzimáticos/farmacologia , Feminino , Hemodinâmica , Fluxometria por Laser-Doppler , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Oxigênio/metabolismo , Polietileno/química , Pressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa