Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transp Res Part A Policy Pract ; 161: 25-47, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603124

RESUMO

This paper studies the effectiveness of several pandemic restriction measures adopted in Singapore during the COVID-19 outbreak. To this end, the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model widely used to describe the dynamic process of epidemic propagation is extended to an area-based SEIR model with the consideration of exposure to infections during commute and quarantine. The proposed model considers infections within areas and infections occurred during the commute of individuals. A case study of the Singapore MRT system is presented to show the effectiveness of pandemic restriction policies implemented in Singapore, namely social distancing, work shift and Circuit Breaker (CB) and phase advisories. A long-term investigation of COVID-19 pandemic in Singapore is performed, and the disease transmission dynamics in 2020-2021 (which covers the first wave and second wave of COVID-19 pandemic in Singapore) is modelled.

2.
Traffic Inj Prev ; : 1-9, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046244

RESUMO

OBJECTIVES: Aggressive driving behavior can lead to potential traffic collision risks, and abnormal weather conditions can exacerbate this behavior. This study aims to develop recognition models for aggressive driving under various climate conditions, addressing the challenge of collecting sufficient data in abnormal weather. METHODS: Driving data was collected in a virtual environment using a driving simulator under both normal and abnormal weather conditions. A model was trained on data from normal weather (source domain) and then transferred to foggy and rainy weather conditions (target domains) for retraining and fine-tuning. The K-means algorithm clustered driving behavior instances into three styles: aggressive, normal, and cautious. These clusters were used as labels for each instance in training a CNN model. The pre-trained CNN model was then transferred and fine-tuned for abnormal weather conditions. RESULTS: The transferred models showed improved recognition performance, achieving an accuracy score of 0.81 in both foggy and rainy weather conditions. This surpassed the non-transferred models' accuracy scores of 0.72 and 0.69, respectively. CONCLUSIONS: The study demonstrates the significant application value of transfer learning in recognizing aggressive driving behaviors with limited data. It also highlights the feasibility of using this approach to address the challenges of driving behavior recognition under abnormal weather conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa