Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 35(34): 11946-59, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311776

RESUMO

Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a "precritical period" of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic-ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia-ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT: Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Desenvolvimento Infantil/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Eletroencefalografia/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos , Ratos , Ratos Long-Evans , Vibrissas/inervação , Vibrissas/fisiologia
2.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38283686

RESUMO

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and mal-adaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.

3.
Neuron ; 112(12): 2062-2078.e7, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38614102

RESUMO

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.


Assuntos
Dinorfinas , Medo , Neurônios , Córtex Pré-Frontal , Animais , Dinorfinas/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Medo/fisiologia , Camundongos , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Animal/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa