RESUMO
A new dibrominated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is reported as a new metal-free photocatalyst. This BODIPY showed similar optoelectronic, electrochemical, and performance properties to those of Ru(bpy)3Cl2, one of the most common photocatalysts in a known radical-ionic transformation, such as the formation of 1,4-dicarbonyl compounds. Moreover, additional sequences in which the generated oxonium ion is trapped by an internal nucleophile were developed using this BODIPY photocatalyst. These new sequences allowed the straightforward preparation of γ-alkoxylactones, monoprotected 1,4-ketoaldehydes, and dihydrofurans. This new catalyst, the methodology, and the forged functional groups could be important tools in organic synthesis.
RESUMO
A chelating coumarin-derived ligand sensitizes all emitting lanthanide ions in the solid state and gives high absolute quantum yields for ethanol solutions of complexes of Sm, Eu, Tb, and Dy, above 20% for the last two. Crystal structures of these four complexes are [Ln(Cum)3(H2O)(X)]·X where X = MeOH or EtOH.
RESUMO
This study introduces a paradigm-shifting approach to optimize mitochondrial targeting. Employing a new fluorescent probe strategy, we unravel a combined influence of both Nernst potential (Ψ) and partitioning (P) contributions. Through the synthesis of new benz[e]indolinium-derived probes, our findings redefine the landscape of mitochondrial localization by optimizing the efficacy of mitochondrial probe retention in primary cortical neurons undergoing normoxia and oxygen-glucose deprivation. This methodology not only advances our understanding of subcellular dynamics, but also holds promise for transformative applications in biomedical research and therapeutic development.