Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 23(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-29295539

RESUMO

Ferredoxin-NADP(H) reductases (FNRs) deliver NADPH or low potential one-electron donors to redox-based metabolism in plastids and bacteria. Xanthomonas citri subsp. citri (Xcc) is a Gram-negative bacterium responsible for citrus canker disease that affects commercial citrus crops worldwide. The Xcc fpr gene encodes a bacterial type FNR (XccFPR) that contributes to the bacterial response to oxidative stress conditions, usually found during plant colonization. Therefore, XccFPR is relevant for the pathogen survival and its inhibition might represent a strategy to treat citrus canker. Because of mechanistic and structural differences from plastidic FNRs, XccFPR is also a potential antibacterial target. We have optimized an activity-based high-throughput screening (HTS) assay that identifies XccFPR inhibitors. We selected 43 hits from a chemical library and narrowed them down to the four most promising inhibitors. The antimicrobial effect of these compounds was evaluated on Xcc cultures, finding one with antimicrobial properties. Based on the functional groups of this compound and their geometric arrangement, we identified another three XccFPR inhibitors. Inhibition mechanisms and constants were determined for these four XccFPR inhibitors. Their specificity was also evaluated by studying their effect on the plastidic Anabaena PCC 7119 FNR, finding differences that can become interesting tools to discover Xcc antimicrobials.


Assuntos
Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Ferredoxina-NADP Redutase/antagonistas & inibidores , Xanthomonas/enzimologia , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Sítios de Ligação , Di-Hidrolipoamida Desidrogenase/metabolismo , Inibidores Enzimáticos/química , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ensaios de Triagem em Larga Escala , Cinética , Simulação de Acoplamento Molecular
2.
Glycobiology ; 26(3): 301-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26531228

RESUMO

Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex(3), similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption of the O-OTase led to the total loss of protein glycosylation, together with a defect in biofilm formation and reduced pathogenicity towards tomato plants. Comparative proteomic analysis revealed that the loss of glycosylation is not associated with widespread proteome changes. Only the levels of a single glycoprotein, the type IV pilin, were diminished in the absence of glycosylation. In parallel, disruption of glycosylation triggered an increase in the levels of a surface lectin homologous to Pseudomonas PA-IIL. These results reveal the important role of glycosylation in the pathogenesis of R. solanacearum.


Assuntos
Proteínas de Fímbrias/biossíntese , Hexosiltransferases/biossíntese , Proteínas de Membrana/biossíntese , Proteômica , Ralstonia solanacearum/química , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Glicoproteínas/biossíntese , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Hexosiltransferases/química , Hexosiltransferases/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Antígenos O/química , Antígenos O/genética , Ralstonia solanacearum/metabolismo
3.
Curr Microbiol ; 73(6): 904-914, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664015

RESUMO

Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.


Assuntos
Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Proteínas de Fímbrias/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Deleção de Genes , Virulência , Xanthomonas/genética , Xanthomonas/patogenicidade
4.
Biochim Biophys Acta ; 1837(10): 1730-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24953402

RESUMO

Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.


Assuntos
Ferredoxina-NADP Redutase/metabolismo , Plantas/enzimologia , Biocatálise , Domínio Catalítico , Cinética , Modelos Moleculares , Plastídeos
5.
J Biol Chem ; 286(29): 25628-43, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21596742

RESUMO

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.


Assuntos
Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Imunidade Inata , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Xanthomonas axonopodis/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Carboidratos , Citrus sinensis/anatomia & histologia , Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/isolamento & purificação , Dados de Sequência Molecular , Peróxidos/metabolismo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Xanthomonas axonopodis/metabolismo
6.
Biochem Mol Biol Educ ; 50(5): 537-546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894125

RESUMO

The CRISPR/Cas9 system is widely used for editing genes in various organisms and is a very useful tool due to its versatility, simplicity, and efficiency. To teach its principles to post-graduate students we designed a laboratory activity to obtain and analyze PDS3 mutants in Arabidopsis thaliana plants consisting of: 1) Design of guide RNAs using bioinformatics tools; 2) plant transformation (which is optional depending on the length of the course); 3) observation and evaluation of the mutant's phenotypes in the Phytoene desaturase (PDS3) gene, which exhibit an albino phenotype and different degrees of mosaicism in the editing events we evaluated; 4) PCR amplification of a fragment that includes the mutated region followed by analysis of single-stranded DNA conformation polymorphisms (SSCP) using native polyacrylamide gel electrophoresis and silver nitrate staining to detect changes in the amplicon sequence due to gene editing. Through SSCP, the students were able to distinguish between homozygous and heterozygous edited plants. A highlight feature of this protocol is the visualization and detection of the mutation/edition without sequencing the edited fragment.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples , Edição de Genes/métodos , Humanos , Plantas Geneticamente Modificadas/genética , RNA Guia de Cinetoplastídeos/genética
7.
Proc Natl Acad Sci U S A ; 105(47): 18631-6, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19015524

RESUMO

Plant natriuretic peptides (PNPs) are a class of extracellular, systemically mobile molecules that elicit a number of plant responses important in homeostasis and growth. The bacterial citrus pathogen, Xanthomonas axonopodis pv. citri, also contains a gene encoding a PNP-like protein, XacPNP, that shares significant sequence similarity and identical domain organization with plant PNPs but has no homologues in other bacteria. We have expressed and purified XacPNP and demonstrated that the bacterial protein alters physiological responses including stomatal opening in plants. Although XacPNP is not expressed under standard nutrient rich culture conditions, it is strongly induced under conditions that mimic the nutrient poor intercellular apoplastic environment of leaves, as well as in infected tissue, suggesting that XacPNP transcription can respond to the host environment. To characterize the role of XacPNP during bacterial infection, we constructed a XacPNP deletion mutant. The lesions caused by this mutant were more necrotic than those observed with the wild-type, and bacterial cell death occurred earlier in the mutant. Moreover, when we expressed XacPNP in Xanthomonas axonopodis pv. vesicatoria, the transgenic bacteria caused less necrotic lesions in the host than the wild-type. In conclusion, we present evidence that a plant-like bacterial PNP can enable a plant pathogen to modify host responses to create conditions favorable to its own survival.


Assuntos
Homeostase/fisiologia , Peptídeos Natriuréticos/fisiologia , Proteínas de Plantas/fisiologia , Plantas/microbiologia , Xanthomonas/fisiologia , Proteínas de Plantas/química , Plantas/metabolismo
8.
BMC Plant Biol ; 10: 51, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20302677

RESUMO

BACKGROUND: Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS: Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS: We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.


Assuntos
Citrus/metabolismo , Citrus/microbiologia , Interações Hospedeiro-Patógeno , Peptídeos Natriuréticos/metabolismo , Proteoma/metabolismo , Xanthomonas axonopodis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Fluorescência , Espectrometria de Massas , Mutação/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Proteoma/química , Proteômica , Homologia de Sequência de Aminoácidos
9.
Plant Sci ; 291: 110361, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928670

RESUMO

Light modulates almost every aspect of plant physiology, including plant-pathogen interactions. Among these, the hypersensitive response (HR) of plants to pathogens is characterized by a rapid and localized programmed cell death (PCD), which is critical to restrict the spread of pathogens from the infection site. The aim of this work was to study the role of light in the interaction between Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and non-host tobacco plants. To this end, we examined the HR under different light treatments (white and red light) by using a range of well-established markers of PCD. The alterations found at the cellular level included: i) loss of membrane integrity and nuclei, ii) RuBisCo and DNA degradation, and iii) changes in nuclease profiles and accumulation of cysteine proteinases. Our results suggest that red light plays a role during the HR of tobacco plants to Pto DC3000 infection, delaying the PCD process.


Assuntos
Apoptose/efeitos da radiação , Interações Hospedeiro-Patógeno/efeitos da radiação , Luz , Nicotiana/fisiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Nicotiana/efeitos da radiação
10.
Front Plant Sci ; 11: 1156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849714

RESUMO

Ralstonia solanacearum is the causative agent of bacterial wilt disease on a wide range of plant species. Besides the numerous bacterial activities required for host invasion, those involved in the adaptation to the plant environment are key for the success of infection. R. solanacearum ability to cope with the oxidative burst produced by the plant is likely one of the activities required to grow parasitically. Among the multiple reactive oxygen species (ROS)-scavenging enzymes predicted in the R. solanacearum GMI1000 genome, a single monofunctional catalase (KatE) and two KatG bifunctional catalases were identified. In this work, we show that these catalase activities are active in bacterial protein extracts and demonstrate by gene disruption and mutant complementation that the monofunctional catalase activity is encoded by katE. Different strategies were used to evaluate the role of KatE in bacterial physiology and during the infection process that causes bacterial wilt. We show that the activity of the enzyme is maximal during exponential growth in vitro and this growth-phase regulation occurs at the transcriptional level. Our studies also demonstrate that katE expression is transcriptionally activated by HrpG, a central regulator of R. solanacearum induced upon contact with the plant cells. In addition, we reveal that even though both KatE and KatG catalase activities are induced upon hydrogen peroxide treatment, KatE has a major effect on bacterial survival under oxidative stress conditions and especially in the adaptive response of R. solanacearum to this oxidant. The katE mutant strain also exhibited differences in the structural characteristics of the biofilms developed on an abiotic surface in comparison to wild-type cells, but not in the overall amount of biofilm production. The role of catalase KatE during the interaction with its host plant tomato is also studied, revealing that disruption of this gene has no effect on R. solanacearum virulence or bacterial growth in leave tissues, which suggests a minor role for this catalase in bacterial fitness in planta. Our work provides the first characterization of the R. solanacearum catalases and identifies KatE as a bona fide monofunctional catalase with an important role in bacterial protection against oxidative stress.

11.
Front Plant Sci ; 10: 1618, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921261

RESUMO

Nowadays, fertilization and pest control are carried out using chemical compounds that contaminate soil and deteriorate human health. Plant growth promoting bacteria endophytes (PGPBEs), are a well-studied group of bacteria that offers benefits to the host plant, such as phytostimulation, biofertilization, and protection against other microorganisms. The study of Gluconacetobacter diazotrophicus-which belongs to PGPBEs-aids the development of alternative strategies of an integrated approach for crop management practices. Ralstonia solanacearum is responsible for bacterial wilt disease. This phytopathogen is of great interest worldwide due to the enormous economic losses it causes. In this study the action of G. diazotrophicus as a growth promoting bacterium in Arabidopsis thaliana seedlings is analyzed, evaluating the antagonistic mechanisms of this beneficial endophytic bacterium during biotic stress produced by R. solanacearum. Effective colonization of G. diazotrophicus was determined through bacterial counting assays, evaluation of anatomical and growth parameters, and pigments quantification. Biocontrol assays were carried out with Ralstonia pseudosolanacearum GMI1000 model strain and R. solanacearum A21 a recently isolated strain. Inoculation of A. thaliana (Col 0) with G. diazotrophicus Pal 5 triggers a set of biochemical and structural changes in roots, stems, and leaves of seedlings. Discrete callose deposits as papillae were observed at specific sites of root hairs, trichomes, and leaf tissue. Upon R. pseudosolanacearum GMI1000 infection, endophyte-treated plants demonstrated being induced for defense through an augmented callose deposition at root hairs and leaves compared with the non-endophyte-treated controls. The endophytic bacterium appears to be able to prime callose response. Roots and stems cross sections showed that integrity of all tissues was preserved in endophyte-treated plants infected with R. solanacearum A21. The mechanisms of resistance elicited by the plant after inoculation with the endophyte would be greater lignification and sclerosis in tissues and reinforcement of the cell wall through the deposition of callose. As a consequence of this priming in plant defense response, viable phytopathogenic bacteria counting were considerably fewer in endophyte-inoculated plants than in not-inoculated controls. Our results indicate that G. diazotrophicus colonizes A. thaliana plants performing a protective role against the phytopathogenic bacterium R. solanacearum promoting the activation of plant defense system.

12.
Photochem Photobiol ; 93(3): 666-674, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500702

RESUMO

Light is an important environmental signal for almost all living organisms. The light perception is achieved by photoreceptor proteins. As can be observed from the great number of bacterial genomes sequenced, plant pathogenic bacteria encode for a large number of photoreceptor proteins. The physiological implications of these photoreceptors are still poorly characterized. However, recent studies revealed the participation of these photosensory proteins in the pathogenic process. Here, we summarize what is known about these proteins and their role during the virulence process, concluding that the light environment modulates the plant-pathogen interaction.


Assuntos
Proteínas de Bactérias/fisiologia , Interações Hospedeiro-Patógeno , Fotorreceptores Microbianos/fisiologia , Plantas/microbiologia , Agrobacterium/metabolismo , Agrobacterium/patogenicidade , Luz , Virulência , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
13.
Front Plant Sci ; 8: 1424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894453

RESUMO

Potato (Solanum tuberosum L.) is one of the main hosts of Ralstonia solanacearum, the causative agent of bacterial wilt. This plant pathogen bacteria produce asymptomatic latent infections that promote its global spread, hindering disease control. A potato breeding program is conducted in Uruguay based on the introgression of resistance from the wild native species S. commersonii Dun. Currently, several backcrosses were generated exploiting the high genetic variability of this wild species resulting in advanced interspecific breeding lines with different levels of bacterial wilt resistance. The overall aim of this work was to characterize the interaction of the improved potato germplasm with R. solanacearum. Potato clones with different responses to R. solanacearum were selected, and colonization, dissemination and multiplication patterns after infection were evaluated. A R. solanacearum strain belonging to the phylotype IIB-sequevar 1, with high aggressiveness on potato was genetically modified to constitutively generate fluorescence and luminescence from either the green fluorescence protein gene or lux operon. These reporter strains were used to allow a direct and precise visualization of fluorescent and luminescent cells in plant tissues by confocal microscopy and luminometry. Based on wilting scoring and detection of latent infections, the selected clones were classified as susceptible or tolerant, while no immune-like resistance response was identified. Typical wilting symptoms in susceptible plants were correlated with high concentrations of bacteria in roots and along the stems. Tolerant clones showed a colonization pattern restricted to roots and a limited number of xylem vessels only in the stem base. Results indicate that resistance in potato is achieved through restriction of bacterial invasion and multiplication inside plant tissues, particularly in stems. Tolerant plants were also characterized by induction of anatomical and biochemical changes after R. solanacearum infection, including hyperplasic activity of conductor tissue, tylose production, callose and lignin deposition, and accumulation of reactive oxygen species. This study highlights the potential of the identified tolerant interspecific potato clones as valuable genetic resources for potato-breeding programs and leads to a better understanding of resistance against R. solanacearum in potato.

14.
PLoS One ; 11(3): e0151657, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26990197

RESUMO

Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.


Assuntos
Catalase/metabolismo , Citrus sinensis/microbiologia , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/microbiologia , Xanthomonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Catalase/genética , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo/fisiologia , Doenças das Plantas/microbiologia , Raios Ultravioleta , Xanthomonas/enzimologia , Xanthomonas/efeitos da radiação
15.
Photochem Photobiol ; 91(5): 1123-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172037

RESUMO

The blue-light (BL) absorbing protein Xcc-LOV from Xanthomonas citri subsp. citri is composed of a LOV-domain, a histidine kinase (HK) and a response regulator. Spectroscopic characterization of Xcc-LOV identified intermediates and kinetics of the protein's photocycle. Measurements of steady state and time-resolved fluorescence allowed determination of quantum yields for triplet (ΦT  = 0.68 ± 0.03) and photoproduct formation (Φ390  = 0.46 ± 0.05). The lifetime for triplet decay was determined as τT  = 2.4-2.8 µs. Fluorescence of tryptophan and tyrosine residues was unchanged upon light-to-dark conversion, emphasizing the absence of significant conformational changes. Photochemistry was blocked upon cysteine C76 (C76S) mutation, causing a seven-fold longer lifetime of the triplet state (τT  = 16-18.5 µs). Optoacoustic spectroscopy yielded the energy content of the triplet state. Interestingly, Xcc-LOV did not undergo the volume contraction reported for other LOV domains within the observation time window, although the back-conversion into the dark state was accompanied by a volume expansion. A radioactivity-based enzyme function assay revealed a larger HK activity in the lit than in the dark state. The C76S mutant showed a still lower enzyme function, indicating the dark state activity being corrupted by a remaining portion of the long-lived lit state.


Assuntos
Luz , Fotorreceptores Microbianos/metabolismo , Proteínas Quinases/fisiologia , Xanthomonas/fisiologia , Histidina Quinase , Oxigênio/química
16.
Funct Plant Biol ; 42(8): 758-769, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480719

RESUMO

Plants are constantly exposed to stress factors. Biotic stress is produced by living organisms such as pathogens, whereas abiotic stress by unfavourable environmental conditions. In Citrus species, one of the most important fruit crops in the world, these stresses generate serious limitations in productivity. Through biochemical and transcriptomic assays, we had previously characterised the Citrus sinensis (L.) Osbeck nonhost response to Xanthomonas campestris pv. vesicatoria (Doidge), in contrast to Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri (Hasse). A hypersensitive response (HR) including changes in the expression of several transcription factors was reported. Here, a new exhaustive analysis of the Citrus sinensis transcriptomes previously obtained was performed, allowing us to detect the over-representation of photosynthesis, abiotic stress and secondary metabolism processes during the nonhost HR. The broad downregulation of photosynthesis-related genes was correlated with an altered photosynthesis physiology. The high number of heat shock proteins and genes related to abiotic stress, including aquaporins, suggests that stresses crosstalk. Additionally, the secondary metabolism exhibited lignin and carotenoid biosynthesis modifications and expression changes in the cell rescue GSTs. In conclusion, novel features of the Citrus nonhost HR, an important part of the plants' defence against disease that has yet to be fully exploited in plant breeding programs, are presented.

17.
J Plant Physiol ; 170(10): 934-42, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23453188

RESUMO

Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance.


Assuntos
Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Xanthomonas campestris/fisiologia , Alelos , Morte Celular , Citrus sinensis/citologia , Citrus sinensis/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética
18.
Biomed Res Int ; 2013: 906572, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23984418

RESUMO

We have solved the structure of ferredoxin-NADP(H) reductase, FPR, from the plant pathogen Xanthomonas axonopodis pv. citri, responsible for citrus canker, at a resolution of 1.5 Å. This structure reveals differences in the mobility of specific loops when compared to other FPRs, probably unrelated to the hydride transfer process, which contributes to explaining the structural and functional divergence between the subclass I FPRs. Interactions of the C-terminus of the enzyme with the phosphoadenosine of the cofactor FAD limit its mobility, thus affecting the entrance of nicotinamide into the active site. This structure opens the possibility of rationally designing drugs against the X. axonopodis pv. citri phytopathogen.


Assuntos
Citrus/microbiologia , Ferredoxina-NADP Redutase/química , Flavina-Adenina Dinucleotídeo/metabolismo , Xanthomonas axonopodis/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Homologia Estrutural de Proteína
19.
PLoS One ; 8(11): e80930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260514

RESUMO

Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.


Assuntos
Proteínas de Bactérias/genética , Citrus sinensis/imunologia , Regulação da Expressão Gênica de Plantas , Fotorreceptores Microbianos/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Citrus sinensis/genética , Citrus sinensis/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Luz , Fotorreceptores Microbianos/metabolismo , Fotossíntese/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Virulência , Xanthomonas/genética
20.
PLoS One ; 7(7): e40051, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792211

RESUMO

Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.


Assuntos
Citrus/microbiologia , Lipopolissacarídeos/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/metabolismo , Xanthomonas axonopodis/patogenicidade , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Mutação , Fenótipo , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Estresse Fisiológico , Virulência , Xanthomonas axonopodis/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa