Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Photonics Technol Lett ; 30(16): 1487-1490, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30618484

RESUMO

Multimode interference (MMI) waveguides can be used to create wavelength-dependent spot patterns which enables simultaneous analyte detection on a single optofluidic chip, useful for disease diagnostics. The fidelity of such multi-spot patterns is important for high sensitivity and accurate target identification. Buried rib structures have been incorporated into these SiO2-based waveguides to improve environmental stability. Through experiments and simulation, this letter explores design parameters for a buried MMI rib waveguide based on anti-resonant reflecting optical waveguides in order to produce high-fidelity spot patterns. Optimal rib heights and widths are reported in the context of available microfabrication etch technology and performance for an optimized biosensor is shown.

2.
IEEE J Quantum Electron ; 54(3)2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29657333

RESUMO

Multimode interference (MMI) waveguides can be used for multiplexing and de-multiplexing optical signals. High fidelity, wavelength dependent multi-spot patterns from MMI waveguides are useful for sensitive and simultaneous identification of multiple targets in multiplexed fluorescence optofluidic biosensors. Through experiments and simulation, this paper explores design parameters for an MMI rib anti-resonant reflecting optical waveguide (ARROW) in order to produce high fidelity spot patterns at the liquid core biomarker excitation region. Width and etch depth of the single excitation rib waveguide used to excite the MMI waveguide are especially critical because they determine the size of the input optical mode which is imaged at the MMI waveguide's output. To increase optical throughput into the MMI waveguide when light is coupled in from an optical fiber, tapers in the waveguide width can be used for better mode matching.

3.
IEEE Photonics Technol Lett ; 29(10): 806-809, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29200798

RESUMO

Water absorption was studied in two types of waveguides made from unannealed plasma enhanced chemical vapor deposition (PECVD) SiO2. Standard rib anti-resonant reflecting optical waveguides (ARROWs) were fabricated with thin films of different intrinsic stress and indices of refraction. Buried ARROWs (bARROWs) with low and high refractive index differences between the core and cladding regions were also fabricated from the same types of PECVD films. All waveguides were subjected to a heated, high humidity environment and their optical throughput was tested over time. Due to water absorption in the SiO2 films, the optical throughput of all of the ARROWs decreased with time spent in the wet environment. The ARROWs with the lowest stress SiO2 had the slowest rate of throughput change. High index difference bARROWs showed no decrease in optical throughput after 40 days in the wet environment and are presented as a solution for environmentally stable waveguides made from unannealed PECVD SiO2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa