Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296739

RESUMO

Migraine is a neurological disorder that is associated with severe headaches and seriously affects the lives of patients. Diagnosing Migraine Disease (MD) can be laborious and time-consuming for specialists. For this reason, systems that can assist specialists in the early diagnosis of MD are important. Although migraine is one of the most common neurological diseases, there are very few studies on the diagnosis of MD, especially electroencephalogram (EEG)-and deep learning (DL)-based studies. For this reason, in this study, a new system has been proposed for the early diagnosis of EEG- and DL-based MD. In the proposed study, EEG signals obtained from the resting state (R), visual stimulus (V), and auditory stimulus (A) from 18 migraine patients and 21 healthy control (HC) groups were used. By applying continuous wavelet transform (CWT) and short-time Fourier transform (STFT) methods to these EEG signals, scalogram-spectrogram images were obtained in the time-frequency (T-F) plane. Then, these images were applied as inputs in three different convolutional neural networks (CNN) architectures (AlexNet, ResNet50, SqueezeNet) that proposed deep convolutional neural network (DCNN) models and classification was performed. The results of the classification process were evaluated, taking into account accuracy (acc.), sensitivity (sens.), specificity (spec.), and performance criteria, and the performances of the preferred methods and models in this study were compared. In this way, the situation, method, and model that showed the most successful performance for the early diagnosis of MD were determined. Although the classification results are close to each other, the resting state, CWT method, and AlexNet classifier showed the most successful performance (Acc: 99.74%, Sens: 99.9%, Spec: 99.52%). We think that the results obtained in this study are promising for the early diagnosis of MD and can be of help to experts.

2.
Comput Methods Biomech Biomed Engin ; 25(8): 840-851, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34602001

RESUMO

This study, it was aimed to contribute to the literature on Amyotrophic lateral sclerosis (ALS) diagnosis and Brain-Computer Interface (BCI) technologies by analyzing the electroencephalography (EEG) signals obtained as a result of visual stimuli and attention from ALS patients and healthy controls. It was observed that the success rate significantly increased both in the occipital and central regions in all classifiers, especially in the entropy features. The most successful classification was obtained with the Naïve Bayes (NB) classifier using the Morphological Features (MF) + Variational Mode Decomposition (VMD) -Entropy features at 88.89% in the occipital region and 94.44% in the central region.


Assuntos
Esclerose Lateral Amiotrófica , Interfaces Cérebro-Computador , Esclerose Lateral Amiotrófica/diagnóstico , Teorema de Bayes , Eletroencefalografia/métodos , Potenciais Evocados , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa