Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Ecol Lett ; 27(7): e14461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953253

RESUMO

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Variação Genética , Animais
2.
J Anim Ecol ; 91(11): 2158-2162, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36325629

RESUMO

Research Highlight: Maglianesi, M. A., Maruyama, P. K., Temeles, E. J., Schleuning, M., Zanata, T. B., Sazima, M., Gutiérrez-Zamora, A., Marín-Gómez, O. H., Rosero-Lasprilla, L., Ramírez-Burbano, M. B., Ruffini, A. E., Salamanca-Reyes, J. R., Sazima, I., Nuñez-Rosas, L. E., Arizmendi, M. C., Rahbek, C., & Dalsgaard, B. (2022). Behavioural and morphological traits influence sex-specific floral resource use by hummingbirds across the Americas. Journal of Animal Ecology, 00: 00-00. https://doi.org/10.1111/1365-2656.13746. In their paper on intersexual differences in niche breadth and niche overlap in floral resource use in hummingbird communities, Maglianesi et al. compiled data of plant-hummingbird interactions based on pollen loads, and territoriality and morphological traits for 31 hummingbird species, and investigated whether patterns of resource use by females and males were related to sexual dimorphism and foraging behaviour. While accounting for evolutionary relatedness among species, the authors found a high level of resource partitioning between sexes (broader and more dissimilar floral niche breadth in females) and the sex-specific resource use by hummingbird species was related to territoriality and morphological traits; niche overlap between sexes was greater for territorial than non-territorial species, and lower for species with greater sexual dimorphism in bill curvature. This paper addresses two very timely issues, on the one hand on resource partitioning by sex to reduce intersexual competition in hummingbirds, and on the other hand highlight the much needed information on foraging ecology of female hummingbirds for better understanding of intersexual variation in shaping coexistence and species diversity in hummingbird communities and the interactions between plants and their hummingbird pollinators.


Investigación Destacada: Maglianesi, M. A., Maruyama, P. K., Temeles, E. J., Schleuning, M., Zanata, T. B., Sazima, M., Gutiérrez-Zamora, A., Marín-Gómez, O. H., Rosero-Lasprilla, L., Ramírez-Burbano, M. B., Ruffini, A. E., Salamanca-Reyes, J. R., Sazima, I., Nuñez-Rosas, L. E., Arizmendi, M. C., Rahbek, C., & Dalsgaard, B. (2022). Behavioural and morphological traits influence sex-specific floral resource use by hummingbirds across the Americas. Journal of Animal Ecology, 00: 00-00. https://doi.org/10.1111/1365-2656.13746. En su artículo sobre las diferencias intersexuales en la amplitud de nicho y la superposición de nicho en el uso de recursos florales en las comunidades de colibríes, Maglianesi et al. recopilaron datos de interacciones planta-colibrí basados en cargas de polen, y de territorialidad y rasgos morfológicos para 31 especies de colibríes, e investigaron si los patrones de uso de recursos por parte de hembras y machos estaban relacionados con el dimorfismo sexual y la conducta de forrajeo. Al tener en cuenta la relación evolutiva entre las especies, los autores encontraron un alto nivel de partición de recursos entre sexos (amplitud de nicho floral más amplio y diferente en las hembras) y el uso de recursos específico del sexo por parte de las especies de colibríes estaba relacionado con la territorialidad y los rasgos morfológicos; la superposición de nicho entre sexos fue mayor para las especies territoriales que para las no territoriales, y menor para las especies con mayor dimorfismo sexual en la curvatura del pico. Este artículo aborda dos temas muy oportunos, por un lado, la partición de recursos por sexo para reducir la competencia intersexual en los colibríes y, por otro lado, destaca la necesidad de información sobre la ecología de alimentación de las hembras de los colibríes para una mejor comprensión de la variación intersexual en la conformación de la coexistencia y diversidad de especies en las comunidades de colibríes y las interacciones entre las plantas y sus colibríes polinizadores.


Assuntos
Aves , Flores , Animais , Flores/anatomia & histologia , Ecologia , Pólen , Evolução Biológica , Polinização
3.
Am J Bot ; 107(9): 1225-1237, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32882058

RESUMO

PREMISE: Mistletoes parasitize many hardwood and softwood tree species; however, they play key roles in forest ecosystems. Adult individuals of Psittacanthus schiedeanus take up water and xylem nutrients from both deciduous and evergreen host trees, suggesting the ability to modify its physiology according to the availability of host resources. Yet, there is little information regarding the effects of mistletoes on their host trees from the eophyll stage to reproductive phases of the parasite. METHODS: Taking advantage of the fact that P. schiedeanus can reach sexual maturity in 1 year, we investigated its physiological performance during development on deciduous (Liquidambar styraciflua) and evergreen (Quercus germana) host trees in a cloud forest in eastern Mexico. Variables related to chlorophyll fluorescence, carbon assimilation, photosynthetic pigments, and nitrogen, phosphorus, and carbon contents of the parasite and non-infected and infected hosts were analyzed in a nursery experiment. RESULTS: Mistletoe had lower water-use efficiency and higher transpiration rates than the host species did. Despite the fact that P. schiedeanus obtained resources from species with differing phenology and resource availability, the parasite steadily improved its CO2 assimilation, electron transport rate, and nutrient content from seedling establishment to adult life stages. Mistletoe decreased the photosynthetic reactions of carbon metabolism in the deciduous host, photosynthetic light reactions in the evergreen host, and nutritional status of both host species, mostly in the evergreen host. CONCLUSIONS: The hypothesis that mistletoes adjust their physiology according to the availability of host resources could extend to the early growth of the parasite.


Assuntos
Erva-de-Passarinho , Árvores , Ecossistema , Humanos , México , Folhas de Planta
4.
Mol Phylogenet Evol ; 138: 17-30, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31129351

RESUMO

The biogeographical history of Mesoamerican cloud forests is complex, encompassing a diverse and heterogeneous mixture of species with temperate and tropical origins. The dynamic geological landscape and climate change from the Miocene to the Pleistocene affected the distributions and composition of cloud forests in the region, and contributed to divergence events at different time scales. We assessed genetic variation of 29 populations of P. matudae, and closely related P. guatemalensis and P. oleifolius (Podocarpaceae) by sequencing 255 samples of the psbA-trnH and trnL-F intergenic spacer regions across the species ranges. We conducted phylogenetic, population and spatial genetic analyses as well as divergence time estimation and ecological niche modelling (ENM) to test the generality of demographic and genetic scenarios for cloud forest-adapted species. The results revealed genetic differentiation among species, with some individuals of P. oleifolius and P. guatemalensis placed in the P. matudae group and some P. oleifolius in the P. guatemalensis group. Predictions of ENMs under past climatic conditions and a strong signal of spatial expansion suggest that the highland P. matudae and P. oleifolius populations experienced expansions into lower elevation during the Last Glacial Maximum (LGM). Contrary to predictions by the two precipitation models and elevational ups and downs for cloud forest taxa during the LGM, genetic differentiation and predicted distribution of suitable habitat support the hypotheses that P. matudae and P. oleifolius remained in situ during the LGM primarily within the current fragmented distribution of the cloud forest and spread into the lowlands during the LGM, whereas the distribution of suitable habitat for P. guatemalensis had no major changes upwards from the Last Inter Glacial (LIG) to current conditions.


Assuntos
Variação Genética , Traqueófitas/genética , América , Ecossistema , Genética Populacional , Haplótipos/genética , Filogenia , Filogeografia , Análise de Componente Principal , Fatores de Tempo
5.
J Hered ; 110(2): 229-246, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30496534

RESUMO

The host dependence of mistletoes suggests that they track the distributions of their hosts. However, the factors that determine the geographic distribution of mistletoes are not well understood. In this study, the phylogeography of Psittacanthus sonorae was reconstructed by sequencing one nuclear (ITS) and two plastid (trnL-F and atpB-rbcL) regions of 148 plants from populations separated by the Sea of Cortez. Divergence time and gene flow were estimated to gain insight into the historical demography and geographic structuring of genetic variation. We also described and mapped the spatial distribution of suitable habitat occupied by P. sonorae and its most common host Bursera microphylla in the Sonoran Desert, along with their responses to Quaternary climate fluctuations using environmental data and ecological niche modeling (ENM). We detected environmental and genetic differentiation between the peninsular and continental P. sonorae populations. Population divergence occurred during the Pleistocene, around the time of the Last Glacial Maximum. No signals of population growth were detected, with net gene flow moving from the continent to the peninsula. ENM models indicate decoupled responses by the mistletoe and its main host to past climate changes. For the Last Interglacial to the present, most models produce only partial areas of overlap on both the peninsula and the continent. Our results support a scenario of Late-Pleistocene isolation and divergence with asymmetrical gene flow between peninsular and continental P. sonorae populations. Continental populations migrated to the peninsula and the spatial isolation probably produced genetic differentiation under different environmental conditions.


Assuntos
Loranthaceae/classificação , Loranthaceae/genética , Filogenia , Filogeografia , Evolução Biológica , Clima Desértico , Meio Ambiente , Variação Genética , Genética Populacional , Geografia , Haplótipos , Modelos Teóricos
6.
Mol Phylogenet Evol ; 122: 80-94, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407482

RESUMO

The predominantly Asian tribe Miliuseae (Annonaceae) includes over 37 Neotropical species that are mainly distributed across Mesoamerica, from southern Mexico to northern Colombia. The tremendous ecological and morphological diversity of this clade, including ramiflory, cauliflory, flagelliflory, and clonality, suggests adaptive radiation. Despite the spectacular phenotypic divergence of this clade, little is known about its phylogenetic and evolutionary history. In this study we used a nuclear DNA marker and seven chloroplast markers, and maximum parsimony, maximum likelihood and Bayesian inference methods to reconstruct a comprehensive time-calibrated phylogeny of tribe Miliuseae, especially focusing on the Desmopsis-Stenanona clade. We also perform ancestral area reconstructions to infer the biogeographic history of this group. Finally, we use ecological niche modeling, lineage distribution models, and niche overlap tests to assess whether geographic isolation and ecological specialization influenced the diversification of lineages within this clade. We reconstructed a monophyletic Miliuseae that is divided into two strongly supported clades: (i) a Sapranthus-Tridimeris clade and (ii) a Desmopsis-Stenanona clade. The colonization of the Neotropics and subsequent diversification of Neotropical Miliuseae seems to have been associated with the expansion of the boreotropical forests during the late Eocene and their subsequent fragmentation and southern displacement. Further speciation within Neotropical Miliuseae out of the Maya block seems to have occurred during the last 15 million years. Lastly, the geographic structuring of major lineages of the Desmopsis-Stenanona clade seems to have followed a climatic gradient, supporting the hypothesis that morphological differentiation between closely related species resulted from both long-term isolation between geographic ranges and adaptation to environmental conditions.


Assuntos
Annonaceae/classificação , Filogenia , Annonaceae/genética , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , América Central , Clima , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Florestas , Análise de Sequência de DNA
7.
Naturwissenschaften ; 105(9-10): 54, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30291455

RESUMO

Recent studies on ecological networks have quantified the contribution of ecological, historical, and evolutionary factors on the structure of local communities of interacting species. However, the influence of species' biogeographical traits, such as migratory habits or phylogeographical history, on ecological networks is poorly understood. Meta-networks, i.e., networks that cover large spatial extensions and include species not co-occurring locally, enable us to investigate mechanisms that operate at larger spatial scales such as migratory patterns or phylogeographical distributions, as well as indirect relationships among species through shared partners. Using a meta-network of hummingbird-plant interaction across Mexico, we illustrate the usefulness of this approach by investigating (1) how biogeographical and morphological factors associate with observed interactions and (2) how species-specific biogeographical characteristics associate with species' network roles. Our results show that all studied hummingbird and plant species in the meta-network were interrelated, either directly or through shared partners. The meta-network was structured into modules, resulting from hummingbirds and plants interacting preferentially with subsets of species, which differed in biogeographical, and, to a lesser extent, morphological traits. Furthermore, migrants and hummingbirds from Nearctic, Transition, and widespread regions had a higher topological importance in the meta-network. Our study illustrates how meta-networks may contribute to our current knowledge on species' biogeographical traits and biotic interactions, providing a perspective complementary to local-scale networks.


Assuntos
Aves/fisiologia , Ecossistema , Animais , Aves/classificação , México , Plantas
8.
Naturwissenschaften ; 106(1-2): 1, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30560485

RESUMO

The pollination syndrome concept implies that flowers evolved with particular sets of characteristics, such as colors, shapes, orientations, and rewards, as a means of attracting pollinators. However, these traits may have also evolved to deter unwanted visitors. The North American genus Penstemon exhibits a great floral diversity that is mainly associated with bumblebee and hummingbird pollination. Evolutionary shifts from insect pollination to hummingbird pollination have occurred in Penstemon repeatedly, but some species maintain mixed-pollination systems and intermediate floral traits between bee- and hummingbird-pollination modes. The apparently intermediate floral traits of species with mixed-pollination systems might be potentially acting to deter bumblebee foragers. Then, bird-flower traits might be selected with increased hummingbird visitation over evolutionary time might, resulting in specialization to and the evolution of floral traits present in hummingbird-pollinated species. Here, we modified bee-pollination floral traits in Penstemon gentianoides with a mixed pollination system, to resemble hummingbird-pollination traits, and measured the effects of trait modification on bumblebee foraging behavior and plant female reproductive fitness. Our results showed that reduction in the width of the corolla tube and the absence of the corolla lip negatively affects bumblebee visitation and their efficiency as pollinators, and that the synergistic interaction of both traits enhanced the "anti-bee" effect. We conclude that acquisition of floral traits that resemble those of hummingbird-pollination enables Penstemon plant species to deter bumblebee visits.


Assuntos
Abelhas/fisiologia , Aves/fisiologia , Flores/fisiologia , Penstemon/fisiologia , Polinização/fisiologia , Animais , Biodiversidade , Evolução Biológica , Flores/anatomia & histologia , Penstemon/anatomia & histologia
9.
BMC Evol Biol ; 17(1): 126, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583078

RESUMO

BACKGROUND: Geographical and temporal patterns of diversification in bee hummingbirds (Mellisugini) were assessed with respect to the evolution of migration, critical for colonization of North America. We generated a dated multilocus phylogeny of the Mellisugini based on a dense sampling using Bayesian inference, maximum-likelihood and maximum parsimony methods, and reconstructed the ancestral states of distributional areas in a Bayesian framework and migratory behavior using maximum parsimony, maximum-likelihood and re-rooting methods. RESULTS: All phylogenetic analyses confirmed monophyly of the Mellisugini and the inclusion of Atthis, Calothorax, Doricha, Eulidia, Mellisuga, Microstilbon, Myrmia, Tilmatura, and Thaumastura. Mellisugini consists of two clades: (1) South American species (including Tilmatura dupontii), and (2) species distributed in North and Central America and the Caribbean islands. The second clade consists of four subclades: Mexican (Calothorax, Doricha) and Caribbean (Archilochus, Calliphlox, Mellisuga) sheartails, Calypte, and Selasphorus (incl. Atthis). Coalescent-based dating places the origin of the Mellisugini in the mid-to-late Miocene, with crown ages of most subclades in the early Pliocene, and subsequent species splits in the Pleistocene. Bee hummingbirds reached western North America by the end of the Miocene and the ancestral mellisuginid (bee hummingbirds) was reconstructed as sedentary, with four independent gains of migratory behavior during the evolution of the Mellisugini. CONCLUSIONS: Early colonization of North America and subsequent evolution of migration best explained biogeographic and diversification patterns within the Mellisugini. The repeated evolution of long-distance migration by different lineages was critical for the colonization of North America, contributing to the radiation of bee hummingbirds. Comparative phylogeography is needed to test whether the repeated evolution of migration resulted from northward expansion of southern sedentary populations.


Assuntos
Aves/genética , Aves/fisiologia , Migração Animal , Animais , Teorema de Bayes , Evolução Biológica , Aves/classificação , Feminino , Especiação Genética , Masculino , América do Norte , Filogenia , Filogeografia , Análise de Sequência de DNA
10.
New Phytol ; 214(4): 1751-1761, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28205240

RESUMO

The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution.


Assuntos
Genética Populacional , Erva-de-Passarinho/genética , Clima , Ecossistema , Interações Hospedeiro-Parasita , Loranthaceae/fisiologia , México , Repetições de Microssatélites
11.
BMC Evol Biol ; 16: 78, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27071983

RESUMO

BACKGROUND: Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation. However, historical and ecological factors could also contribute to explain genetic structuring particularly when mistletoe host races are distributed allopatrically. Using sequence data from nuclear (ITS) and chloroplast (trnL-F) DNA, we investigate the genetic differentiation of 31 Psittacanthus schiedeanus (Loranthaceae) populations across the Mesoamerican species range. We conducted phylogenetic, population and spatial genetic analyses on 274 individuals of P. schiedeanus to gain insight of the evolutionary history of these populations. Species distribution modeling, isolation with migration and Bayesian inference methods were used to infer the evolutionary transition of mistletoe invasion, in which evolutionary scenarios were compared through posterior probabilities. RESULTS: Our analyses revealed shallow levels of population structure with three genetic groups present across the sample area. Nine haplotypes were identified after sequencing the trnL-F intergenic spacer. These haplotypes showed phylogeographic structure, with three groups with restricted gene flow corresponding to the distribution of individuals/populations separated by habitat (cloud forest localities from San Luis Potosí to northwestern Oaxaca and Chiapas, localities with xeric vegetation in central Oaxaca, and localities with tropical deciduous forests in Chiapas), with post-glacial population expansions and potentially corresponding to post-glacial invasion types. Similarly, 44 ITS ribotypes suggest phylogeographic structure, despite the fact that most frequent ribotypes are widespread indicating effective nuclear gene flow via pollen. Gene flow estimates, a significant genetic signal of demographic expansion, and range shifts under past climatic conditions predicted by species distribution modeling suggest post-glacial invasion of P. schiedeanus mistletoes to cloud forests. However, Approximate Bayesian Computation (ABC) analyses strongly supported a scenario of simultaneous divergence among the three groups isolated recently. CONCLUSIONS: Our results provide support for the predominant role of isolation and environmental factors in driving genetic differentiation of Mesoamerican parrot-flower mistletoes. The ABC results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats. Under this scenario, climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation. Our findings add to an understanding of the role of recent isolation and colonization in shaping cloud forest communities in the region.


Assuntos
Florestas , Loranthaceae/genética , Teorema de Bayes , Evolução Biológica , Mudança Climática , Ecossistema , Fluxo Gênico , Variação Genética , Haplótipos , Humanos , Loranthaceae/classificação , Modelos Biológicos , Filogenia , Filogeografia
12.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842573

RESUMO

Ecological communities that experience stable climate conditions have been speculated to preserve more specialized interspecific associations and have higher proportions of smaller ranged species (SRS). Thus, areas with disproportionally large numbers of SRS are expected to coincide geographically with a high degree of community-level ecological specialization, but this suggestion remains poorly supported with empirical evidence. Here, we analysed data for hummingbird resource specialization, range size, contemporary climate, and Late Quaternary climate stability for 46 hummingbird-plant mutualistic networks distributed across the Americas, representing 130 hummingbird species (ca 40% of all hummingbird species). We demonstrate a positive relationship between the proportion of SRS of hummingbirds and community-level specialization, i.e. the division of the floral niche among coexisting hummingbird species. This relationship remained strong even when accounting for climate, furthermore, the effect of SRS on specialization was far stronger than the effect of specialization on SRS, suggesting that climate largely influences specialization through species' range-size dynamics. Irrespective of the exact mechanism involved, our results indicate that communities consisting of higher proportions of SRS may be vulnerable to disturbance not only because of their small geographical ranges, but also because of their high degree of specialization.


Assuntos
Distribuição Animal , Aves/fisiologia , Ecossistema , Magnoliopsida/fisiologia , Simbiose , Animais , América Central , Clima , América do Norte , América do Sul
13.
Mol Phylogenet Evol ; 99: 76-88, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988412

RESUMO

By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range.


Assuntos
Clima , Ecossistema , Florestas , Variação Genética , Passeriformes/genética , Filogeografia , Migração Animal , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , México , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia , Fatores de Tempo
14.
Mol Phylogenet Evol ; 94(Pt A): 74-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26302950

RESUMO

Montane barriers influence the evolutionary history of lineages by promoting isolation of populations. The effects of these historical processes are evident in patterns of differentiation among extant populations, which are often expressed as genetic and behavioral variation between populations. We investigated the effects of geographic barriers on the evolutionary history of a Mesoamerican bird by studying patterns of genetic and vocal variation in the Ruddy-capped Nightingale-Thrush (Turdidae: Catharus frantzii), a non-migratory oscine bird that inhabits montane forests from central Mexico to Panama. We reconstructed the phylogeographic history and estimated divergence times between populations using Bayesian and maximum likelihood methods. We found strong support for the existence of four mitochondrial lineages of C. frantzii corresponding to isolated mountain ranges: Sierra Madre Oriental; Sierra Madre del Sur; the highlands of Chiapas, Guatemala, and El Salvador; and the Talamanca Cordillera. Vocal features in C. frantzii were highly variable among the four observed clades, but vocal variation and genetic variation were uncorrelated. Song variation in C. frantzii suggests that sexual selection and cultural drift could be important factors driving song differentiation in C. frantzii.


Assuntos
Evolução Biológica , Aves Canoras/genética , Aves Canoras/fisiologia , Vocalização Animal/fisiologia , Acústica , Altitude , Animais , Teorema de Bayes , América Central , DNA Mitocondrial/genética , Feminino , Florestas , Variação Genética , Funções Verossimilhança , Masculino , México , Fenótipo , Filogenia , Filogeografia , Aves Canoras/classificação
15.
Am J Bot ; 103(6): 986-97, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27307210

RESUMO

PREMISE OF THE STUDY: During the interactions between a parasitic plant and its host, the parasite affects its host morphologically, anatomically, and physiologically, yet there has been little focus on the effect of hosts on the parasite. Here, the functional interactions between the hemiparasitic mistletoe Psittacanthus schiedeanus and its hosts Liquidambar styraciflua and Quercus germana were interpreted based on the anatomical features of the vascular tissues. METHODS: Using standard techniques for light and transmission electron microscopy, we studied the effects of P. schiedeanus on the phloem anatomy of Liquidambar styraciflua and Quercus germana and vice versa. KEY RESULTS: The phloem of P. schiedeanus has larger sieve elements, companion cells, and sieve plate areas when it is parasitizing L. styraciflua than Q. germana; however, the parasite produces systemic effects on the phloem of its hosts, reducing the size of phloem in L. styraciflua but increasing it in Q. germana. Those seem to be the bidirectional effects. No direct connections between the secondary phloem of the parasite and that of its hosts were observed. Parenchymatic cells of L. styraciflua in contact with connective parenchyma cells of the parasite develop half-plasmodesmata, while those of Q. germana do not. CONCLUSIONS: The bidirectional effects between the parasite and its hosts comprise modifications in secondary phloem that are potentially affected by the phenology of its hosts, a combination of hormonal agents such as auxins, and the symplasmic or apoplasmic pathway for solutes import.


Assuntos
Interações Hospedeiro-Parasita , Liquidambar/anatomia & histologia , Liquidambar/parasitologia , Erva-de-Passarinho/anatomia & histologia , Quercus/anatomia & histologia , Quercus/parasitologia , Liquidambar/citologia , Liquidambar/ultraestrutura , Floema/anatomia & histologia , Floema/citologia , Floema/ultraestrutura , Caules de Planta/anatomia & histologia , Caules de Planta/citologia , Quercus/citologia , Quercus/ultraestrutura
16.
J Hered ; 106(2): 196-210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25649131

RESUMO

Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM.


Assuntos
Evolução Biológica , Cactaceae/genética , Genética Populacional , Mudança Climática , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Fluxo Gênico , Guatemala , Haplótipos , México , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
17.
Mol Ecol ; 23(2): 435-52, 2014 02.
Artigo em Inglês | MEDLINE | ID: mdl-24299330

RESUMO

Unlike other migratory hummingbirds in North America, the broad-tailed hummingbird (Selasphorus platycercus) exhibits both long-distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad-tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.


Assuntos
Evolução Biológica , Aves/genética , Mudança Climática , Genética Populacional , Migração Animal , Animais , Núcleo Celular/genética , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Variação Genética , Genótipo , Guatemala , Haplótipos , México , Repetições de Microssatélites , Modelos Biológicos , Dados de Sequência Molecular , América do Norte , Filogeografia , Análise de Sequência de DNA
18.
Mol Ecol ; 23(16): 4119-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24954419

RESUMO

Recent empirical work on cloud forest-adapted species supports the role of both old divergences across major geographical areas and more recent divergences attributed to Pleistocene climate changes. The shrub Moussonia deppeana is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling throughout the species range and employing plastid and nuclear markers, we (i) test whether the fragmented distribution is correlated with main evolutionary lineages, (ii) reconstruct its phylogeographical history to infer the history of cloud forest in northern Mesoamerica and (iii) evaluate a set of refugia/vicariance scenarios for the region and demographic patterns of the populations whose ranges expanded and tracked cloud forest conditions during the Last Glacial Maximum. We found a deep evolutionary split in M. deppeana about 6-3 Ma, which could be consistent with a Pliocene divergence. Comparison of variation in plastid and nuclear markers revealed several lineages mostly congruent with their isolated geographical distribution and restricted gene flow among groups. Results of species distribution modelling and coalescent simulations fit a model of multiple refugia diverging during interglacial cycles. The demographic history of M. deppeana is not consistent with an expanding-contracting cloud forest archipelago model during the Last Glacial Maximum. Instead, our data suggest that populations persisted across the geographical range throughout the glacial cycles, and experienced isolation and divergence during interglacial periods.


Assuntos
Ecossistema , Genética Populacional , Magnoliopsida/genética , Filogenia , Evolução Biológica , América Central , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/genética , Fluxo Gênico , Haplótipos , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
19.
Mitochondrial DNA B Resour ; 9(1): 5-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187014

RESUMO

Psittacanthus schiedeanus (Cham. & Schltdl.) G.Don., 1834, is a mistletoe species in the Loranthaceae, characteristic of the canopy in cloud forest edges and widely distributed in northern Mesoamerica. Here, we report the complete chloroplast genome sequence of P. schiedeanus, the first for a species in the Psittacantheae tribe. The circularized quadripartite structure of the P. schiedeanus chloroplast genome was 122,586 bp in length and included a large single-copy region of 72,507 bp and two inverted repeats of 21,283 bp separated by a small single-copy region of 7,513 bp. The genome contained 112 genes, of which 96 are unique, including 65 protein-coding genes, 27 transfer RNA, and four ribosomal RNA. The overall GC content in the plastome of P. schiedeanus is 36.9%. Based on 43 published complete chloroplast genome sequences for species in the families Loranthaceae and Santalaceae (Santalales), the maximum-likelihood phylogenetic tree with high-support bootstrap values indicated that P. schiedeanus in the Psittacantheae tribe is sister to the tribe Lorantheae. The chloroplast genome provided in this study represents a valuable resource for genetic, phylogenetic and conservation studies of Psittacanthus species, and an important advance for unraveling the evolutionary history of these hemiparasitic plants.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38705863

RESUMO

Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa