Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 405-429, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750316

RESUMO

Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.


Assuntos
Anemia , Malária , Humanos , Animais , Anemia/complicações , Eritropoese/fisiologia , Eritrócitos , Malária/complicações , Macrófagos
2.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366204

RESUMO

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Quimiocinas/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Neurônios/metabolismo
3.
EMBO Rep ; 23(12): e55839, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268590

RESUMO

ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.


Assuntos
Morte Celular , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Citocinas , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Ubiquitina , Proteínas de Ligação a RNA/genética , Células HT29 , Inflamação
4.
Immunol Rev ; 277(1): 102-112, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28462521

RESUMO

Necroptosis is a form of cell death that can be observed downstream of death receptor or pattern recognition receptor signaling under certain cellular contexts, or in response to some viral and bacterial infections. The receptor interacting protein kinases-1 (RIPK1) and RIPK3 are at the core of necroptotic signaling, among other proteins. Because this pathway is normally halted by the pro-apoptotic protease caspase-8 and the IAP ubiquitin ligases, how and when necroptosis is triggered in physiological settings are ongoing questions. Interestingly, accumulating evidence suggests that RIPK3 has functions beyond the induction of necroptotic cell death, especially in the areas of tissue injury and sterile inflammation. Here, we will discuss the role of RIPK3 in a variety of physiological conditions, including necroptotic and non-necroptotic cell death, in the context of viral and bacterial infections, tissue damage, and inflammation.


Assuntos
Infecções Bacterianas/imunologia , Inflamação/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Viroses/imunologia , Animais , Apoptose , Degradação Necrótica do DNA , Humanos , Necrose , Receptores de Morte Celular/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
5.
Int J Biometeorol ; 58(5): 853-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23605562

RESUMO

Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (Tss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.


Assuntos
Salvia/crescimento & desenvolvimento , Agricultura/métodos , Luz , México , Microclima , Plásticos , Plântula/crescimento & desenvolvimento
6.
J Gen Virol ; 93(Pt 10): 2152-2157, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22815273

RESUMO

Dengue virus (DENV) causes dengue fever and dengue haemorrhagic fever/dengue shock syndrome, both considered major public-health problems worldwide. We generated a lethal DENV-2 strain (D220) by 10 additional cycles of subcutaneous inoculation of mice with supernatant from mosquito cells infected with the previously characterized strain D2S10, followed by harvesting of serum. D220 induces mortality at ten-fold lower doses than D2S10 in mice lacking only the alpha/beta interferon (IFN-α/ß) receptor in C57BL/6 or 129 backgrounds under both non-enhanced and antibody-enhanced conditions. Sequence analysis of the complete viral genome revealed five amino acid changes between D220 and D2S10, of which two (K122I in envelope and V115A in NS4B) appear to account for the observed phenotypic differences between the viruses. By causing mortality at lower doses in C57BL/6 mice lacking only the IFN-α/ß receptor, D220 constitutes an improved tool for study of DENV-induced pathogenesis, as well as for testing potential vaccines and antiviral drugs against DENV.


Assuntos
Vírus da Dengue/metabolismo , Receptor de Interferon alfa e beta/deficiência , Dengue Grave/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Vírus da Dengue/genética , Modelos Animais de Doenças , Genoma Viral , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fenótipo , Receptor de Interferon alfa e beta/genética , Análise de Sequência de Proteína , Dengue Grave/genética , Dengue Grave/virologia
7.
Curr Opin Immunol ; 73: 16-24, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411882

RESUMO

Monocytes are innate immune cells that develop in the bone marrow and are continually released into circulation, where they are poised to enter tissues in response to homeostatic or inflammatory cues. Monocytes are highly plastic cells that can differentiate in tissues into a variety of monocyte-derived cells to replace resident tissue macrophages, promote inflammatory responses, or resolution of inflammation. As such, monocytes can support tissue homeostasis as well as productive and pathogenic immune responses. Recent work shows previously unappreciated heterogeneity in monocyte development and differentiation in the steady state and during infectious, autoimmune, and inflammatory diseases. Monocyte-derived cells can differentiate via signals from cytokines, pattern recognition receptors or other factors, which can influence development in the bone marrow or in tissues. An improved understanding of these monocyte-derived cells and the signals that drive their differentiation in distinct inflammatory settings could allow for targeting these pathways in pathological inflammation.


Assuntos
Doenças Autoimunes/imunologia , Infecções/imunologia , Inflamação/imunologia , Monócitos/metabolismo , Animais , Diferenciação Celular , Citocinas/metabolismo , Humanos , Monócitos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
8.
Sci Immunol ; 4(36)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227597

RESUMO

Although the signaling events that induce different forms of programmed cell death are well defined, the subsequent immune responses to dying cells in the context of cancer remain relatively unexplored. Necroptosis occurs downstream of the receptor-interacting protein kinases RIPK1 and RIPK3, whose activation leads to lytic cell death accompanied by de novo production of proinflammatory mediators. Here, we show that ectopic introduction of necroptotic cells to the tumor microenvironment promotes BATF3+ cDC1- and CD8+ leukocyte-dependent antitumor immunity accompanied by increased tumor antigen loading by tumor-associated antigen-presenting cells. Furthermore, we report the development of constitutively active forms of the necroptosis-inducing enzyme RIPK3 and show that delivery of a gene encoding this enzyme to tumor cells using adeno-associated viruses induces tumor cell necroptosis, which synergizes with immune checkpoint blockade to promote durable tumor clearance. These findings support a role for RIPK1/RIPK3 activation as a beneficial proximal target in the initiation of tumor immunity. Considering that successful tumor immunotherapy regimens will require the rational application of multiple treatment modalities, we propose that maximizing the immunogenicity of dying cells within the tumor microenvironment through specific activation of the necroptotic pathway represents a beneficial treatment approach that may warrant further clinical development.


Assuntos
Necroptose/imunologia , Neoplasias/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Dependovirus/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Receptor de Morte Celular Programada 1/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Microambiente Tumoral/imunologia
9.
Cell Rep ; 28(9): 2275-2287.e5, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461645

RESUMO

Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells.


Assuntos
Membrana Celular/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Células 3T3 , Animais , Retículo Endoplasmático/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
10.
Nat Cell Biol ; 19(9): 1116-1129, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28846096

RESUMO

Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies.


Assuntos
Caspases/metabolismo , Neoplasias do Colo/enzimologia , Mediadores da Inflamação/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , NF-kappa B/metabolismo , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Genótipo , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/patologia , NF-kappa B/deficiência , Necrose , Permeabilidade , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Quinase Induzida por NF-kappaB
11.
Science ; 350(6258): 328-34, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26405229

RESUMO

Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor κB (NF-κB)-induced transcription within dying cells. Decoupling NF-κB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.


Assuntos
Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 8/metabolismo , Sobrevivência Celular , Apresentação Cruzada , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais
12.
Virology ; 432(2): 511-26, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22840606

RESUMO

Dengue virus (DENV) is an enveloped flavivirus with a positive-sense RNA genome transmitted by Aedes mosquitoes, causing the most important arthropod-borne viral disease affecting humans. Relatively few cis-acting RNA regulatory elements have been described in the DENV coding-region. Here, by introducing silent mutations into a DENV-2 infectious clone, we identify the conserved capsid-coding region 1 (CCR1), an RNA sequence element that regulates viral replication in mammalian cells and to a greater extent in Ae. albopictus mosquito cells. These defects were confirmed in vivo, resulting in decreased replication in Ae. aegypti mosquito bodies and dissemination to the salivary glands. Furthermore, CCR1 does not regulate translation, RNA synthesis or virion retention but likely modulates assembly, as mutations resulted in the release of non-infectious viral particles from both cell types. Understanding the role of CCR1 could help characterize the poorly-defined stage of assembly in the DENV life cycle and uncover novel anti-viral targets.


Assuntos
Aedes/virologia , Vírus da Dengue/genética , Regulação Viral da Expressão Gênica , RNA Viral/genética , Sequências Reguladoras de Ácido Ribonucleico , Vírion/metabolismo , Replicação Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Cricetinae , Vírus da Dengue/metabolismo , Dados de Sequência Molecular , RNA Viral/metabolismo
13.
Virology ; 429(1): 12-20, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22537810

RESUMO

The envelope (E) protein of dengue virus (DENV) is composed of three domains (EDI, EDII, EDIII) and is the main target of neutralizing antibodies. Many monoclonal antibodies that bind EDIII strongly neutralize DENV. However in vitro studies indicate that anti-EDIII antibodies contribute little to the neutralizing potency of human DENV-immune serum. In this study, we assess the role of anti-EDIII antibodies in mouse and human DENV-immune serum in neutralizing or enhancing DENV infection in mice. We demonstrate that EDIII-depleted human DENV-immune serum was protective against homologous DENV infection in vivo. Although EDIII-depleted DENV-immune mouse serum demonstrated decreased neutralization potency in vitro, reduced protection in some organs, and enhanced disease in vivo, administration of increased volumes of EDIII-depleted serum abrogated these effects. These data indicate that anti-EDIII antibodies contribute to protection and minimize enhancement when present, but can be replaced by neutralizing antibodies targeting other epitopes on the dengue virion.


Assuntos
Anticorpos Antivirais/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Dengue/virologia , Vírus da Dengue/química , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Estrutura Terciária de Proteína , Especificidade da Espécie , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa