Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(22): 4822-4831, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227767

RESUMO

Gas-phase ion-molecule complexes of silver cation with benzene or toluene are produced via laser vaporization in a pulsed supersonic expansion. These ions are mass-selected and photodissociated with tunable UV-visible lasers. In both cases, photodissociation produces the organic cation as the only fragment via a metal-to-ligand charge-transfer process. The wavelength dependence of the photodissociation produces electronic spectra of the charge-transfer process. Broad structureless spectra result from excitation to the repulsive wall of the charge-transfer excited states. Additional transitions are detected correlating to the forbidden 1S → 1D silver cation-based atomic resonance and to the HOMO-LUMO excitation on the benzene or toluene ligand. Transitions to these states produce the same molecular cation photofragments produced in the charge-transfer transitions, indicating an unanticipated excited-state curve-crossing mechanism. Spectra measured for these ions are compared to those for ions tagged with argon atoms. The presence of argon causes a significant shift on the energetic positions of these electronic transitions for both Ag+(benzene) and Ag+(toluene).

2.
J Chem Phys ; 157(12): 121102, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182433

RESUMO

A new electronic transition is reported for the linear C6 + cation with an origin at 416.8 nm. This spectrum can be compared to the matrix isolation spectra at lower energies reported previously by Fulara et al. [J. Chem. Phys. 123, 044305 (2005)], which assigned linear and cyclic isomers, and to the gas phase spectrum reported previously by Campbell and Dunk [Rev. Sci. Instrum. 90, 103101 (2019)], which detected the same cyclic-isomer spectrum reported by Fulara. Comparisons to electronically excited states and vibrations predicted by various forms of theory allow assignment of the spectrum to a new electronic state of linear C6 +. The spectrum consists of a strong origin band, two vibronic progression members at higher energy and four hot bands at lower energies. The hot bands provide the first gas phase information on ground state vibrational frequencies. The vibrational and electronic structure of C6 + provide a severe challenge to computational chemistry.

3.
J Phys Chem A ; 124(22): 4427-4439, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392420

RESUMO

The spectra for H5+ and D5+ are extended to cover the region between 4830 and 7300 cm-1. These spectra are obtained using mass-selected photodissociation spectroscopy. To understand the nature of the states that are accessed by the transitions in this and prior studies, we develop a four-dimensional model Hamiltonian. This Hamiltonian is expressed in terms of the two outer H2 stretches, the displacement of the shared proton from the center of mass of these two H2 groups, and the distance between the H2 groups. This choice is motivated by the large oscillator strength associated with the shared proton stretch and the fact that the spectral regions that have been probed correspond to zero, one, and two quanta of excitation in the H2 stretches. This model is analyzed using an adiabatic separation of the H2 stretches from the other two vibrations and includes the non-adiabatic couplings between H2 stretch states with the same total number of quanta of excitation in the H2 stretches. Based on the analysis of the energies and wave functions obtained from this model, we find that when there are one or more quanta of excitation in the H2 stretches the states come in pairs that reflect tunneling doublets. The states accessed by the transitions in the spectrum with the largest intensity are assigned to the members of the doublets with requisite symmetry that are localized on the lowest-energy adiabat for a given level of H2 excitation.

4.
Nat Microbiol ; 7(10): 1536-1546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065062

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, probably infects tens of millions of people, primarily in Latin America, causing morbidity and mortality. The options for treatment and prevention of Chagas disease are limited and underutilized. Here we describe the discovery of a series of benzoxaborole compounds with nanomolar activity against extra- and intracellular stages of T. cruzi. Leveraging both ongoing drug discovery efforts in related kinetoplastids, and the exceptional models for rapid drug screening and optimization in T. cruzi, we have identified the prodrug AN15368 that is activated by parasite carboxypeptidases to yield a compound that targets the messenger RNA processing pathway in T. cruzi. AN15368 was found to be active in vitro and in vivo against a range of genetically distinct T. cruzi lineages and was uniformly curative in non-human primates (NHPs) with long-term naturally acquired infections. Treatment in NHPs also revealed no detectable acute toxicity or long-term health or reproductive impact. Thus, AN15368 is an extensively validated and apparently safe, clinically ready candidate with promising potential for prevention and treatment of Chagas disease.


Assuntos
Doença de Chagas , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Primatas , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
5.
Elife ; 72018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29578409

RESUMO

The ability of the Chagas disease agent Trypanosoma cruzi to resist extended in vivo exposure to highly effective trypanocidal compounds prompted us to explore the potential for dormancy and its contribution to failed drug treatments in this infection. We document the development of non-proliferating intracellular amastigotes in vivo and in vitro in the absence of drug treatment. Non-proliferative amastigotes ultimately converted to trypomastigotes and established infections in new host cells. Most significantly, dormant amastigotes were uniquely resistant to extended drug treatment in vivo and in vitro and could re-establish a flourishing infection after as many as 30 days of drug exposure. These results demonstrate a dormancy state in T. cruzi that accounts for the failure of highly cytotoxic compounds to completely resolve the infection. The ability of T. cruzi to establish dormancy throws into question current methods for identifying curative drugs but also suggests alternative therapeutic approaches.


Assuntos
Tolerância a Medicamentos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia , Diferenciação Celular , Proliferação de Células , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa