Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Plant J ; 118(5): 1668-1688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407828

RESUMO

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).


Assuntos
Biocombustíveis , Parede Celular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Caules de Planta , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica
2.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
3.
Fungal Genet Biol ; 159: 103673, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150839

RESUMO

Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.


Assuntos
Celulase , Polyporales , Carbono , Celobiose , Glucose , Humanos , Madeira
4.
Appl Environ Microbiol ; 88(8): e0018822, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348388

RESUMO

Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 µm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.


Assuntos
Polyporales , Madeira , Benzoquinonas/metabolismo , Expressão Gênica , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Madeira/microbiologia
5.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236328

RESUMO

Semiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes. Building on our earlier work, we report the formation of secondary antibody-conjugated Pdots and provide Cryo-TEM evidence for their formation. We demonstrate the selective targeting of the antibody-conjugated Pdots to FLAG-tagged FLS2 membrane receptors in genetically engineered plant leaf cells. We also report the formation of a new class of luminescent Pdots with emission wavelengths of around 1000 nm. Finally, we demonstrate the formation and utility of oxygen sensing Pdots in aqueous media.


Assuntos
Polímeros , Pontos Quânticos , Corantes Fluorescentes , Oxigênio , Semicondutores
6.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876091

RESUMO

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Assuntos
Adaptação Fisiológica , Aspergillus niger/metabolismo , Carbono/metabolismo , Biomassa , Hifas/metabolismo , Pectinas/metabolismo
7.
New Phytol ; 228(6): 1835-1851, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32750158

RESUMO

Fine roots of trees exhibit varying degree of plasticity to adapt to environmental stress. Although the morphological and physiological plasticity of roots has been well studied, less known are the accompanying changes in the chemical composite (chemical plasticity) of fine roots, which regulates both root function and soil carbon sequestration. We investigated the changes in quantity, composition and localization of phenolic compounds in fine root orders of Quercus alba and Quercus rubra subjected to drought stress. In both species the total quantity of lignins varied only by root orders, where the distal (first and second) root orders had lower lignin compared to higher orders. Despite a lower lignin content, the distal root orders had higher content of guaiacyl lignin and bound phenolics that would provide a greater meshing of lignocellulosic matrix, and thus a higher tissue integrity. Unlike lignins, drought altered the quantity and composition of tannins. In Q. alba, the ellagitannins decreased in the distal root orders exposed to drought, while the fiber-bound condensed tannnins increased. The lower content of ellagitannins with antimicrobial properties under drought reveals an adaptive response by fine roots to promote symbiotic association, as evidenced by the higher colonization of ectomycorrhizal fungi. Our study revealed that, when exposed to drought, the composition of heteropolymers are strategically varied across fine root orders, so as to provide a greater root function without compromising the tissue protection.


Assuntos
Micorrizas , Quercus , Secas , Raízes de Plantas , Árvores
8.
Nucleic Acids Res ; 46(2): e7, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29040675

RESUMO

Quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in ß cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.


Assuntos
Dosagem de Genes , Hibridização in Situ Fluorescente/métodos , RNA/genética , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Insulina/genética , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos NOD , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética , Reprodutibilidade dos Testes , Proteínas de Peixe-Zebra/genética
9.
Nano Lett ; 19(3): 1990-1997, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773885

RESUMO

Engineered nanoparticles (NPs) can negatively impact biological systems through induced generation of reactive oxygen species (ROS). Overproduced ROS cause biochemical damage and hence need to be effectively buffered by a sophisticated cellular oxidative stress response system. How this complex cellular system, which consists of multiple enzymes, responds to NP-induced ROS is largely unknown. Here, we apply a single cell analysis to quantitatively evaluate 10 key ROS responsive genes simultaneously to understand how the cell prioritizes tasks and reallocates resources in response to NP-induced oxidative stress. We focus on rainbow trout gill epithelial cells-a model cell type for environmental exposure-and their response to the massive generation of ROS induced by lithium cobalt oxide (LCO) NPs, which are extensively used as cathode materials in lithium ion batteries. Using multiplexed fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) in single cells, we found a shift in the expression of oxidative stress response genes with initial increase in genes targeting superoxide species, followed by increase in genes targeting peroxide and hydroxyl species. In contrast, Li+ and Co2+, at concentrations expected to be shed from the NPs, did not induce ROS generation but showed a potent inhibition of transcription for all 10 stress response genes. Taken together, our findings suggest a "two-hit" model for LCO NP toxicity, where the intact LCO NPs induce high levels of ROS that elicit sequential engagement of stress response genes, while the released metal ions suppress the expression of these genes. Consequently, these effects synergistically drive the exposed cells to become more vulnerable to ROS stress and damage.


Assuntos
Cobalto/farmacologia , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Nanopartículas Metálicas/administração & dosagem , Óxidos/química , Espécies Reativas de Oxigênio/química , Análise de Célula Única/métodos
10.
Fungal Genet Biol ; 123: 33-40, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529285

RESUMO

Wood-decomposing fungi efficiently decompose plant lignocellulose, and there is increasing interest in characterizing and perhaps harnessing the fungal gene regulation strategies that enable wood decomposition. Proper interpretation of these fungal mechanisms relies on accurate quantification of gene expression, demanding reliable internal control genes (ICGs) as references. Commonly used ICGs such as actin, however, fluctuate among wood-decomposing fungi under defined conditions. In this study, by mining RNA-seq data in silico and validating ICGs in vitro using qRT-PCR, we targeted more reliable ICGs for studying transcriptional responses in wood-decomposing fungi, particularly responses to changing environments (e.g., carbon sources, decomposition stages) in various culture conditions. Using the model brown rot fungus Postia placenta in a first-pass study, our mining efforts yielded 15 constitutively-expressed genes robust in variable carbon sources (e.g., no carbon, glucose, cellobiose, aspen) and cultivation stages (e.g., 15 h, 72 h) in submerged cultures. Of these, we found 7 genes as most suitable ICGs. Expression stabilities of these newly selected ICGs were better than commonly used ICGs, analyzed by NormFinder algorithm and qRT-PCR. In a second-pass, multi-species study in solid wood, our RNA-seq mining efforts revealed hundreds of highly constitutively expressed genes among four wood-decomposing fungi with varying nutritional modes (brown rot, white rot), including a shared core set of ICGs numbering 11 genes. Together, the newly selected ICGs highlighted here will increase reliability when studying gene regulatory mechanisms of wood-decomposing fungi.


Assuntos
Fungos/genética , Lignina/genética , Madeira/microbiologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Madeira/genética
11.
Planta ; 250(6): 1941-1953, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529398

RESUMO

MAIN CONCLUSION: Unlike rosette leaves, the mature Arabidopsis rosette core can display full resistance to Botrytis cinerea revealing the importance for spatial and developmental aspects of plant fungal resistance. Arabidopsis thaliana is a model host to investigate plant defense against fungi. However, many of the reports investigating Arabidopsis fungal defense against the necrotrophic fungus, Botrytis cinerea, utilize rosette leaves as host tissue. Here we report organ-dependent differences in B. cinerea resistance of Arabidopsis. Although wild-type Arabidopsis rosette leaves mount a jasmonate-dependent defense that slows fungal growth, this defense is incapable of resisting fungal devastation. In contrast, as the fungus spreads through infected leaf petioles towards the plant center, or rosette core, there is a jasmonate- and age-dependent fungal penetration blockage into the rosette core. We report evidence for induced and preformed resistance in the rosette core, as direct rosette core inoculation can also result in resistance, but at a lower penetrance relative to infections that approach the core from infected leaf petioles. The Arabidopsis rosette core displays a distinct transcriptome relative to other plant organs, and BLADE ON PETIOLE (BOP) transcripts are abundant in the rosette core. The BOP genes, with known roles in abscission zone formation, are required for full Arabidopsis rosette core B. cinerea resistance, suggesting a possible role for BOP-dependent modifications that may help to restrict fungal susceptibility of the rosette core. Finally, we demonstrate that cabbage and cauliflower, common Brassicaceae crops, also display leaf susceptibility and rosette core resistance to B. cinerea that can involve leaf abscission. Thus, spatial and developmental aspects of plant host resistance play critical roles in resistance to necrotrophic fungal pathogens and are important to our understanding of plant defense mechanisms.


Assuntos
Arabidopsis/imunologia , Resistência à Doença , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Botrytis , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/imunologia , Reação em Cadeia da Polimerase em Tempo Real
12.
Proc Natl Acad Sci U S A ; 113(39): 10968-73, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621450

RESUMO

Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.


Assuntos
Coriolaceae/genética , Regulação Fúngica da Expressão Gênica , Madeira/microbiologia , Análise por Conglomerados , Coriolaceae/enzimologia , Coriolaceae/crescimento & desenvolvimento , Genes Fúngicos , Lignina , Micélio/fisiologia , Oxirredução , Transcrição Gênica
13.
Environ Microbiol ; 20(11): 4141-4156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246402

RESUMO

White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.


Assuntos
Basidiomycota/metabolismo , Polyporaceae/metabolismo , Madeira/química , Basidiomycota/enzimologia , Basidiomycota/genética , Betula/química , Betula/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacase/genética , Lacase/metabolismo , Lignina/química , Lignina/metabolismo , Mananas/química , Mananas/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Picea/química , Picea/microbiologia , Madeira/microbiologia
14.
Environ Microbiol ; 19(11): 4587-4598, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29027734

RESUMO

In A. niger, two transcription factors, AraR and XlnR, regulate the production of enzymes involved in degradation of arabinoxylan and catabolism of the released l-arabinose and d-xylose. Deletion of both araR and xlnR in leads to reduced production of (hemi)cellulolytic enzymes and reduced growth on arabinan, arabinogalactan and xylan. In this study, we investigated the colonization and degradation of wheat bran by the A. niger reference strain CBS 137562 and araR/xlnR regulatory mutants using high-resolution microscopy and exo-proteomics. We discovered that wheat bran flakes have a 'rough' and 'smooth' surface with substantially different affinity towards fungal hyphae. While colonization of the rough side was possible for all strains, the xlnR mutants struggled to survive on the smooth side of the wheat bran particles after 20 and 40 h post inoculation. Impaired colonization ability of the smooth surface of wheat bran was linked to reduced potential of ΔxlnR to secrete arabinoxylan and cellulose-degrading enzymes and indicates that XlnR is the major regulator that drives colonization of wheat bran in A. niger.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Transativadores/metabolismo , Triticum/metabolismo , Xilanos/metabolismo , Arabinose/metabolismo , Aspergillus niger/genética , Biomassa , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Polissacarídeos/metabolismo , Proteômica , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Xilose/metabolismo
15.
Bioconjug Chem ; 26(3): 593-601, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25730280

RESUMO

Methods to covalently conjugate Alexa Fluor dyes to cellulose nanocrystals, at limiting amounts that retain the overall structure of the nanocrystals as model cellulose materials, were developed using two approaches. In the first, aldehyde groups are created on the cellulose surfaces by reaction with limiting amounts of sodium periodate, a reaction well-known for oxidizing vicinal diols to create dialdehyde structures. Reductive amination reactions were then applied to bind Alexa Fluor dyes with terminal amino-groups on the linker section. In the absence of the reductive step, dye washes out of the nanocrystal suspension, whereas with the reductive step, a colored product is obtained with the characteristic spectral bands of the conjugated dye. In the second approach, Alexa Fluor dyes were modified to contain chloro-substituted triazine ring at the end of the linker section. These modified dyes then were reacted with cellulose nanocrystals in acetonitrile at elevated temperature, again isolating material with the characteristic spectral bands of the Alexa Fluor dye. Reactions with Alexa Fluor 546 are given as detailed examples, labeling on the order of 1% of the total glucopyranose rings of the cellulose nanocrystals at dye loadings of ca. 5 µg/mg cellulose. Fluorescent cellulose nanocrystals were deposited in pore network microfluidic structures (PDMS) and proof-of-principle bioimaging experiments showed that the spatial localization of the solid cellulose deposits could be determined, and their disappearance under the action of Celluclast enzymes or microbes could be observed over time. In addition, single molecule fluorescence microscopy was demonstrated as a method to follow the disappearance of solid cellulose deposits over time, following the decrease in the number of single blinking dye molecules with time instead of fluorescent intensity.


Assuntos
Microambiente Celular , Celulose/análise , Corantes Fluorescentes/química , Nanopartículas/química , Compostos de Quinolínio/química , Celulose/química , Microscopia de Fluorescência/métodos
16.
Environ Sci Technol ; 49(17): 10642-50, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207769

RESUMO

Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/química , Membranas Artificiais , Nanopartículas Metálicas/toxicidade , Shewanella/efeitos dos fármacos , Ânions , Aderência Bacteriana/efeitos dos fármacos , Cátions , Ouro/química , Hidrodinâmica , Bicamadas Lipídicas/química , Fosfolipídeos/química , Técnicas de Microbalança de Cristal de Quartzo , Shewanella/citologia , Soluções , Eletricidade Estática , Compostos de Sulfidrila/química
17.
Mol Cell Proteomics ; 12(8): 2136-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23639857

RESUMO

This study investigated the dynamics of ubiquitinated proteins after the inflammatory stimulation of RAW 264.7 macrophage-like cells with bacterial lipopolysaccharide. Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. We demonstrated that levels of global ubiquitination and K48 and K63 polyubiquitin chains change after lipopolysaccharide stimulation. Quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which exhibited significant changes in ubiquitination levels following stimulation. Integrating the ubiquitinome data with global proteomic and transcriptomic results allowed us to identify a subset of 88 proteins that were targeted for degradation after lipopolysaccharide stimulation. Using cellular assays and Western blot analyses, we biochemically validated DBC1 (a histone deacetylase inhibitor) as a degradation substrate that is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Inflamação/metabolismo , Proteínas Ubiquitinadas/metabolismo , Animais , Linhagem Celular , Inflamação/induzido quimicamente , Lipopolissacarídeos , Camundongos , Proteoma , Transcriptoma , Ubiquitinação
18.
J Bacteriol ; 196(11): 2053-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659771

RESUMO

The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Ligação Proteica , Transporte Proteico , RNA Bacteriano/genética , Transcriptoma
19.
BMC Genomics ; 15: 1185, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25547186

RESUMO

BACKGROUND: Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. RESULTS: By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light-dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. CONCLUSIONS: This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.


Assuntos
Ritmo Circadiano/genética , Cyanothece/genética , Cyanothece/metabolismo , Escuridão , Perfilação da Expressão Gênica , Proteômica , Biocombustíveis/microbiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cyanothece/fisiologia , Cyanothece/efeitos da radiação , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/efeitos da radiação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Biossíntese de Proteínas/efeitos da radiação , RNA Antissenso/genética , Transcrição Gênica/efeitos da radiação
20.
Analyst ; 139(12): 3174-8, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24816810

RESUMO

A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.


Assuntos
Bacillus subtilis/química , Parede Celular/química , Microscopia de Fluorescência/métodos , Shewanella/química , Corantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa