RESUMO
BACKGROUND: Allogeneic haematopoietic stem cell transplantation (alloSCT) often remains the only curative therapy for hematologic malignancies. Although the management of transplant-associated adverse events considerably improved over the last decades, nonrelapse mortality (NRM) remains a challenge, and endothelial dysfunction was identified as a major contributor to NRM. METHODS: Statin-based endothelial prophylaxis (SEP) has been implemented in the standard of care in our transplant centre to reduce NRM caused by endothelial injury. Here, we retrospectively analysed the impact of SEP on clinical outcome in a cohort of 347 alloSCT patients. RESULTS: SEP (n = 209) was associated with significantly reduced NRM (hazard ratio 0.61, 95% CI 0.38-0.96) and better overall survival (OS) after acute graft-versus-host disease (HR 0.59, 95% CI 0.37-0.93). Subgroup analyses showed that the NRM benefit was mainly found in patients with an intermediate endothelial activation and stress index (EASIX), while relapse risk was not affected. On day 100 post-alloSCT, patients receiving SEP had significantly higher levels of the rate-limiting enzyme of tryptophan metabolism, indoleamine 2,3-dioxygenase (IDO), higher kynurenine to tryptophan ratios as a proxy of IDO activity and tended to have lower levels of the endothelial injury marker ST2 (p = .055). No significant differences in interferon-gamma or IL18 levels were observed. These biomarker signatures suggest that the beneficial effects of SEP might be mediated by both endothelial protection and immunomodulation. CONCLUSIONS: Together, these data suggest that SEP improves NRM and OS post-alloSCT in particular in patients with intermediate endothelial risk and provide first mechanistic clues about its potential mode of action.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Recidiva Local de Neoplasia , Estudos Retrospectivos , Transplante Homólogo , TriptofanoRESUMO
Many peptide drugs such as insulin and glucagon-like peptide (GLP-1) analogues are successfully administered subcutaneously (SC). Following SC injection, peptides may undergo catabolism in the SC compartment before entering systemic circulation, which could compromise their bioavailability and in turn affect their efficacy.This review will discuss how both technology and strategy have evolved over the past years to further elucidate peptide SC catabolism.Modern bioanalytical technologies (particularly liquid chromatography-high-resolution mass spectrometry) and bioinformatics platforms for data mining has prompted the development of in silico, in vitro and in vivo tools for characterising peptide SC catabolism to rapidly address proteolytic liabilities and, ultimately, guide the design of peptides with improved SC bioavailability.More predictive models able to recapitulate the interplay between SC catabolism and other factors driving SC absorption are highly desirable to improve in vitro/in vivo correlations.We envision the routine incorporation of in vitro and in vivo SC catabolism studies in ADME screening funnels to develop more effective peptide drugs for SC delivery.
Assuntos
Insulina , Peptídeos , Peptídeos/metabolismo , Preparações Farmacêuticas , Disponibilidade Biológica , Cromatografia Líquida , Injeções SubcutâneasRESUMO
A new strategy that takes advantage of the synergism between NMR and UHPLC-HRMS yields accurate concentrations of a high number of compounds in biofluids to delineate a personalized metabolic profile (SYNHMET). Metabolite identification and quantification by this method result in a higher accuracy compared to the use of the two techniques separately, even in urine, one of the most challenging biofluids to characterize due to its complexity and variability. We quantified a total of 165 metabolites in the urine of healthy subjects, patients with chronic cystitis, and patients with bladder cancer, with a minimum number of missing values. This result was achieved without the use of analytical standards and calibration curves. A patient's personalized profile can be mapped out from the final dataset's concentrations by comparing them with known normal ranges. This detailed picture has potential applications in clinical practice to monitor a patient's health status and disease progression.
Assuntos
Metabolômica/métodos , Medicina de Precisão/métodos , Urina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida de Alta Pressão/métodos , Cistite/metabolismo , Cistite/urina , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/urinaRESUMO
LC-HRMS-based identification of the products of peptide catabolism is the key to drive the design of more stable compounds. Because the catabolite of a given peptide can be very different from the parent compound and from other catabolites in terms of physicochemical properties, it can be challenging to develop an analytical method that allows recovery and detection of the parent and all parent-related catabolites. The aim of this study was to investigate how the recovery and the matrix effect of peptidic drugs and their catabolites are affected by different protein precipitation (PP) and solid-phase extraction (SPE) protocols. To this purpose, four model peptides representative of different classes (somatostatin, GLP-2, human insulin and liraglutide) were digested with trypsin and chymotrypsin to simulate proteolytic catabolism. The resulting mixtures of the parent peptides and their proteolytic products covering a wide range of relative hydrophobicity (HR ) and isoelectric points (pI) were spiked in human plasma and underwent different PP and SPE protocols. Recovery and matrix effect were measured for each peptide and its catabolites. PP with three volumes of ACN or EtOH yielded the highest overall recoveries (more than 50% for the four parent peptides and all their catabolites) among all the tested PP and SPE protocols. Mixed-mode anion exchange (MAX) was the only SPE sorbent among the five tested that allowed to extract all the peptides with recoveries more than 20%. Matrix effect was generally lower with SPE. Overall, it was observed that peptides with either high hydrophilicity (e.g., somatostatin catabolites) or hydrophobicity (GLP-2 and lipidated liraglutide catabolites) had a much narrower choice of PP solvent or SPE protocol. Simulation of catabolism using recombinant enzymes together with in silico calculation of the HR and the pI of potential proteolysis products is recommended to select the optimal extraction conditions for the study of peptide catabolism.
Assuntos
Quimotripsina/metabolismo , Peptídeos/química , Extração em Fase Sólida/métodos , Tripsina/metabolismo , Acetonitrilas/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Plasma/química , Proteólise , Espectrometria de Massas em TandemRESUMO
Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.
Assuntos
Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/uso terapêutico , Descoberta de Drogas/métodos , Doença de Huntington/tratamento farmacológico , Modelos Biológicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/metabolismo , Permeabilidade Capilar/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Impedância Elétrica , Células Endoteliais/metabolismo , Permeabilidade , Ratos , Ratos Sprague-Dawley , Proteínas Carreadoras de Solutos/metabolismo , Suínos , Junções Íntimas/metabolismoRESUMO
In drug discovery, there is increasing interest in peptides as therapeutic agents due to several appealing characteristics that are typical of this class of compounds, including high target affinity, excellent selectivity, and low toxicity. However, peptides usually present also some challenging ADME (absorption, distribution, metabolism, and excretion) issues such as limited metabolic stability, poor oral bioavailability, and short half-lives. In this context, early preclinical in vitro studies such as plasma metabolic stability assays are crucial to improve developability of a peptidic drug. In order to speed up the optimization of peptide metabolic stability, a strategy was developed for the integrated semi-quantitative determination of metabolic stability of peptides and qualitative identification/structural elucidation of their metabolites in preclinical plasma metabolic stability studies using liquid chromatography-high-resolution Orbitrap™ mass spectrometry (LC-HRMS). Sample preparation was based on protein precipitation: experimental conditions were optimized after evaluating and comparing different organic solvents in order to obtain an adequate extraction of the parent peptides and their metabolites and to minimize matrix effect. Peptides and their metabolites were analyzed by reverse-phase liquid chromatography: a template gradient (total run time, 6 min) was created to allow retention and good peak shape for peptides of different polarity and isoelectric points. Three LC columns were selected to be systematically evaluated for each series of peptides. Targeted and untargeted HRMS data were simultaneously acquired in positive full scan + data-dependent MS/MS acquisition mode, and then processed to calculate plasma half-life and to identify the major cleavage sites, this latter by using the software Biopharma Finder™. Finally, as an example of the application of this workflow, a study that shows the plasma stability improvement of a series of antimicrobial peptides is described. This approach was developed for the evaluation of in vitro plasma metabolic stability studies of peptides, but it could also be applied to other in vitro metabolic stability models (e.g., whole blood, hepatocytes). Graphical Abstract Left: trend plot for omiganan and major metabolites. Right: stability plot for five antimicrobial peptidesafter incubation with mouse plasma.
Assuntos
Cromatografia Líquida/métodos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Animais , Camundongos , Fluxo de TrabalhoRESUMO
Mucopolysaccharidosis type IIIA is a lysosomal storage disorder caused by mutations in the gene coding for heparan-N-sulphatase, a crucial enzyme in the degradation of heparan sulfate. In mucopolysaccharidosis type IIIA, heparan sulfate accumulates in the lysosomes, predominantly affecting the central nervous system. It is the most common and most severe form of mucopolysaccharidosis type III, with onset typically before the age of ten years. There is an ongoing effort to develop therapies that aim at restoring enzyme function in the brain. This study introduces a novel tandem mass spectrometry method for assessing heparan-N-sulphatase activity in pediatric cerebrospinal fluid from healthy and disease individuals. Analysis of cerebrospinal fluid samples revealed marked differences in enzyme activity, with mucopolysaccharidosis type IIIA individuals exhibiting significantly reduced levels. This new method could serve as a valuable tool for evaluating the efficacy of future therapeutic interventions targeting sulphatase activity restoration in the brain.
RESUMO
Huntington's disease (HD) is caused by the expansion of a polyglutamine (polyQ)-encoding tract in exon 1 of the huntingtin gene to greater than 35 CAG repeats. It typically has a disease course lasting 15-20 years, and there are currently no disease-modifying therapies available. Thus, there is a need for faithful mouse models of HD to use in preclinical studies of disease mechanisms, target validation, and therapeutic compound testing. A large variety of mouse models of HD were generated, none of which fully recapitulate human disease, complicating the selection of appropriate models for preclinical studies. Here, we present the urinary liquid chromatography-high-resolution mass spectrometry analysis employed to identify metabolic alterations in transgenic R6/2 and zQ175DN knock-in mice. In R6/2 mice, the perturbation of the corticosterone metabolism and the accumulation of pyrraline, indicative of the development of insulin resistance and the impairment of pheromone excretion, were observed. Differently from R6/2, zQ175DN mice showed the accumulation of oxidative stress metabolites. Both genotypes showed alterations in the tryptophan metabolism. This approach aims to improve our understanding of the molecular mechanisms involved in HD neuropathology, facilitating the selection of appropriate mouse models for preclinical studies. It also aims to identify potential biomarkers specific to HD.
RESUMO
We recently described C18 fatty acid acylated peptides as a new class of potent long-lasting single-chain RXFP1 agonists that displayed relaxin-like activities in vivo. Early pharmacokinetics and toxicological studies of these stearic acid acylated peptides revealed a relevant oxidative metabolism occurring in dog and minipig, and also seen at a lower extent in monkey and rat. Mass spectrometry combined to NMR spectroscopy studies revealed that the oxidation occurred, unexpectedly, on the stearic acid chain at ω-1, ω-2 and ω-3 positions. Structure-metabolism relationship studies on acylated analogues with different fatty acids lengths (C15-C20) showed that the extent of oxidation was higher with longer chains. The oxidized metabolites could be generated in vitro using liver microsomes and engineered bacterial CYPs. These systems were correlating poorly with in vivo metabolism observed across species; however, the results suggest that this biotransformation pathway might be catalyzed by some unknown CYP enzymes.
Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Animais , Cães , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Oxirredução , Ácidos Esteáricos , Suínos , Porco Miniatura/metabolismo , HaplorrinosRESUMO
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Assuntos
Doença de Huntington , Tomografia por Emissão de Pósitrons , Animais , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
Lipidation, a common strategy to improve half-life of therapeutic peptides, affects their tendency to oligomerize, their interaction with plasmatic proteins, and their catabolism. In this work, we have leveraged the use of NMR and SPR spectroscopy to elucidate oligomerization propensity and albumin interaction of different analogs of the two marketed lipidated GLP-1 agonists liraglutide and semaglutide. As most lipidated therapeutic peptides are administered by subcutaneous injection, we have also assessed in vitro their catabolism in the SC tissue using the LC-HRMS-based SCiMetPep assay. We observed that oligomerization had a shielding effect against catabolism. At the same time, binding to albumin may provide only limited protection from proteolysis due to the higher unbound peptide fraction present in the subcutaneous compartment with respect to the plasma. Finally, identification of catabolites in rat plasma after SC dosing of semaglutide showed a good correlation with the in vitro data, with Tyr19-Leu20 being the major cleavage site. Early characterization of the complex interplay between oligomerization, albumin binding, and catabolism at the injection site is essential for the synthesis of lipidated peptides with good pharmacokinetic profiles.
Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Albuminas , Animais , Meia-Vida , Hipoglicemiantes , Liraglutida , Peptídeos , RatosRESUMO
PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.
Assuntos
Anticorpos Monoclonais/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Substituição de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Células Hep G2 , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/imunologia , Hipercolesterolemia/metabolismo , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Lipoproteínas LDL/genética , Lipoproteínas LDL/imunologia , Mutagênese Sítio-Dirigida , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de LDL/genética , Receptores de LDL/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologiaRESUMO
Wnt/LRP5 signaling is a central regulatory component of bone formative and resorptive activities, and the pathway inhibitor DKK1 is a suppressor of bone formation and bone mass accrual in mice. In addition, augmented DKK1 levels are associated with high bone turnover in diverse low bone mass states in rodent models and disease etiologies in human. However, examination of the precise role of DKK1 in the normal skeleton and in higher species requires the development of refined DKK1-specific pharmacological tools. Here, we report the strategy resulting in isolation of a panel of fully human anti-DKK1 antibodies applicable to studies interrogating the roles of mouse, rhesus, and human DKK1. Selected anti-DKK1 antibodies bind primate and human DKK-1 with picomolar affinities yet do not appreciably bind to DKK2 or DKK4. Epitopes mapped within the DKK1 C-terminal domain necessary for interaction with LRP5/6 and consequently effectively neutralized DKK1 function in vitro. When introduced into naïve normal growing female mice, IgGs significantly improved trabecular bone volume and structure and increased both trabecular and cortical bone mineral densities in a dose-related fashion. Furthermore, fully human DKK1-IgG displayed favorable pharmacokinetic parameters in non-human primates. In summary, we demonstrate here a rate-limiting function of physiologic DKK1 levels in the regulation of bone mass in intact female mice, amendable to specific pharmacologic neutralization by newly identified DKK1-IgGs. Importantly the fully human IgGs display a profile of attributes that recommends their testing in higher species and their use in evaluating DKK1 function in relevant disease models.
Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Especificidade de Anticorpos , Densidade Óssea/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Densidade Óssea/imunologia , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/imunologia , Doenças Ósseas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Proteínas Relacionadas a Receptor de LDL/imunologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macaca fascicularis , Macaca mulatta , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/imunologiaRESUMO
Fibrosing chronic graft-versus-host disease (cGVHD) is a debilitating complication of allogeneic stem cell transplantation (alloSCT). A driver of fibrosis is the kynurenine (Kyn) pathway, and Kyn metabolism patterns and cytokines may influence cGVHD severity and manifestation (fibrosing versus gastrointestinal [GI] cGVHD). Using a liquid chromatography-tandem mass spectrometry approach on sera obtained from 425 patients with allografts, we identified high CXCL9, high indoleamine-2,3-dioxygenase (IDO) activity, and an activated Kyn pathway as common characteristics in all cGVHD subtypes. Specific Kyn metabolism patterns could be identified for non-severe cGVHD, severe GI cGVHD, and fibrosing cGVHD, respectively. Specifically, fibrosing cGVHD was associated with a distinct pathway shift toward anthranilic and kynurenic acid, correlating with reduced activity of the vitamin-B2-dependent kynurenine monooxygenase, low vitamin B6, and increased interleukin-18. The Kyn metabolite signature is a candidate biomarker for severe fibrosing cGVHD and provides a rationale for translational trials on prophylactic vitamin B2/B6 supplementation for cGVHD prevention.
Assuntos
Doença Enxerto-Hospedeiro/sangue , Ácido Cinurênico/sangue , Cinurenina/sangue , Riboflavina/sangue , Transplante de Células-Tronco , Vitamina B 6/sangue , Adolescente , Adulto , Idoso , Quimiocina CXCL9/sangue , Quimiocina CXCL9/genética , Feminino , Fibrose , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interleucina-18/sangue , Interleucina-18/genética , Quinurenina 3-Mono-Oxigenase/sangue , Quinurenina 3-Mono-Oxigenase/genética , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Leucemia/terapia , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Linfoma/terapia , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Transdução de Sinais , Transplante Homólogo , Triptofano/sangue , ortoaminobenzoatos/sangueRESUMO
Coenzyme A (CoA) is a fundamental cofactor involved in a number of important biochemical reactions in the cell. Altered CoA metabolism results in severe conditions such as pantothenate kinase-associated neurodegeneration (PKAN) in which a reduction of the activity of pantothenate kinase isoform 2 (PANK2) present in CoA biosynthesis in the brain consequently lowers the level of CoA in this organ. In order to develop a new drug aimed at restoring the sufficient amount of CoA in the brain of PKAN patients, we looked at its turnover. We report here the results of two experiments that enabled us to measure the half-life of pantothenic acid, free CoA (CoASH) and acetylCoA in the brains and livers of male and female C57BL/6N mice, and total CoA in the brains of male mice. We administered (intrastriatally or orally) a single dose of a [13C3-15N-18O]-labelled coenzyme A precursor (fosmetpantotenate or [13C3-15N]-pantothenic acid) to the mice and measured, by liquid chromatography-mass spectrometry, unlabelled- and labelled-coenzyme A species appearance and disappearance over time. We found that the turnover of all metabolites was faster in the liver than in the brain in both genders with no evident gender difference observed. In the oral study, the CoASH half-life was: 69 ± 5 h (male) and 82 ± 6 h (female) in the liver; 136 ± 14 h (male) and 144 ± 12 h (female) in the brain. AcetylCoA half-life was 74 ± 9 h (male) and 71 ± 7 h (female) in the liver; 117 ± 13 h (male) and 158 ± 23 (female) in the brain. These results were in accordance with the corresponding values obtained after intrastriatal infusion of labelled-fosmetpantotenate (CoASH 124 ± 13 h, acetylCoA 117 ± 11 and total CoA 144 ± 17 in male brain).
Assuntos
Acetilcoenzima A/farmacocinética , Encéfalo/metabolismo , Coenzima A/farmacocinética , Fígado/metabolismo , Ácido Pantotênico/farmacocinética , Acetilcoenzima A/metabolismo , Administração Oral , Animais , Biotransformação , Encéfalo/efeitos dos fármacos , Coenzima A/metabolismo , Feminino , Meia-Vida , Humanos , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismoRESUMO
The insulin-like peptide human relaxin-2 was identified as a hormone that, among other biological functions, mediates the hemodynamic changes occurring during pregnancy. Recombinant relaxin-2 (serelaxin) has shown beneficial effects in acute heart failure, but its full therapeutic potential has been hampered by its short half-life and the need for intravenous administration limiting its use to intensive care units. In this study, we report the development of long-acting potent single-chain relaxin peptide mimetics. Modifications in the B-chain of relaxin, such as the introduction of specific mutations and the trimming of the sequence to an optimal size, resulted in potent, structurally simplified peptide agonists of the relaxin receptor Relaxin Family Peptide Receptor 1 (RXFP1) (e.g., 54). Introduction of suitable spacers and fatty acids led to the identification of single-chain lipidated peptide agonists of RXFP1, with sub-nanomolar activity, high subcutaneous bioavailability, extended half-lives, and in vivo efficacy (e.g., 64).
Assuntos
Lipopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/análogos & derivados , Relaxina/farmacologia , Sequência de Aminoácidos , Animais , Doenças Cardiovasculares , Linhagem Celular Tumoral , Células HEK293 , Meia-Vida , Humanos , Lipopeptídeos/genética , Lipopeptídeos/farmacocinética , Masculino , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Subunidades Proteicas , Ratos Sprague-Dawley , Relaxina/genética , Relação Estrutura-AtividadeRESUMO
The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.
Assuntos
Encéfalo/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/química , Proteína Huntingtina/metabolismo , Agregados Proteicos/fisiologia , Piridinas/química , Compostos Radiofarmacêuticos/química , Doença de Alzheimer , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.
Assuntos
Proteína Huntingtina/análise , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ligantes , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Compostos Radiofarmacêuticos/análise , Ratos Sprague-DawleyRESUMO
Phosphatase of Regenerating Liver-3 (PRL-3) is a small protein tyrosine phosphatase considered an appealing therapeutic cancer target due to its involvement in metastatic progression. However, despite its importance, the direct molecular targets of PRL-3 action are not yet known. Here we report the identification of Ezrin as a specific and direct cellular substrate of PRL-3. In HCT116 colon cancer cell line, Ezrin was identified among the cellular proteins whose phosphorylation level decreased upon ectopic over-expression of wtPRL-3 but not of catalytically inactive PRL-3 mutants. Although PRL-3 over-expression in HCT116 cells appeared to affect Ezrin phosphorylation status at both tyrosine residues and Thr567, suppression of the endogenous protein by RNA interference pointed to Ezrin-Thr567 as the residue primarily affected by PRL-3 action. In vitro dephosphorylation assays suggested Ezrin-Thr567 as a direct substrate of PRL-3 also proving this enzyme as belonging to the dual specificity phosphatase family. Furthermore, the same effect on levels of pThr567, but not on pTyr residues, was observed in endothelial cells pointing to Ezrin-pThr567 dephosphorylation as a mean through which PRL-3 exerts its function in promoting tumor progression as well as in the establishment of the new vasculature needed for tumor survival and expansion.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Catálise/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células HCT116 , Humanos , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Fosfotirosina/metabolismo , Interferência de RNA , Especificidade por Substrato/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
The protein tyrosine phosphatase PRL-3 is an appealing therapeutic cancer target for its well described involvement in the metastasis progression. Nevertheless, very little is known about PRL-3 role in tumorigenesis. In the attempt to identify the protein target of this phosphatase we have devised a model system based on the use of highly invasive HCT116 colon cancer cells over-expressing PRL-3. We used 2-D difference gel electrophoresis combined with the fluorescence staining Pro-Q Diamond selective for phosphorylated proteins to monitor changes in the phosphorylation status of possible substrates. Proteins whose phosphorylation level was negatively affected by PRL-3 over-expression were identified by MS. Two proteins were found to be significantly dephosphorylated in this condition, the cytoskeletal protein ezrin and elongation factor 2. Ezrin has already been described as having a proactive role in cancer metastasis through control of its phosphorylation status, and the PRL-3-induced modulation of ezrin phosphorylation in HCT116 and human umblical vascular endothelial cells is the subject of a separate paper by Forte et al. [Biochim. Biophys. Acta 2008, 1783, 334-344]. The combination of 2-D difference in gel electrophoresis and Pro-Q Diamond was hence confirmed successful in analyzing changes of protein phosphorylation which enable the identification of kinase/phosphatase targets.