Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 33(6): 54, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35691951

RESUMO

Particles released from cobalt-chromium-molybdenum (CoCrMo) alloys are considered common elicitors of chronic inflammatory adverse effects. There is a lack of data demonstrating particle numbers, size distribution and elemental composition of bone marrow resident particles which would allow for implementation of clinically relevant test strategies in bone marrow models at different degrees of exposure. The aim of this study was to investigate metal particle exposure in human periprosthetic bone marrow of three types of arthroplasty implants. Periprosthetic bone marrow sections from eight patients exposed to CoCrMo particles were analyzed via spatially resolved and synchrotron-based nanoscopic X-ray fluorescence imaging. These analyses revealed lognormal particle size distribution patterns predominantly towards the nanoscale. Analyses of particle numbers and normalization to bone marrow volume and bone marrow cell number indicated particle concentrations of up to 1 × 1011 particles/ml bone marrow or 2 × 104 particles/bone marrow cell, respectively. Analyses of elemental ratios of CoCrMo particles showed that particularly the particles' Co content depends on particle size. The obtained data point towards Co release from arthroprosthetic particles in the course of dealloying and degradation processes of larger particles within periprosthetic bone marrow. This is the first study providing data based on metal particle analyses to be used for future in vitro and in vivo studies of possible toxic effects in human bone marrow following exposure to arthroprosthetic CoCrMo particles of different concentration, size, and elemental composition. Graphical abstract.


Assuntos
Cobalto , Molibdênio , Ligas , Medula Óssea , Cromo , Humanos , Metais , Síncrotrons , Vitálio
2.
Biofabrication ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955197

RESUMO

Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g., in various malignant and non-malignant diseases such as multiple myeloma (MM), primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived from in vivo studies in mice, as in vitro studies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survival in vitro for up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCs in vitro. Our innovative model system is suitable for in-depth in vitro studies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.

3.
Orthopadie (Heidelb) ; 52(3): 196-205, 2023 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-36867226

RESUMO

Particle disease is the condition caused by wear debris on surrounding tissues and influences the well-being of arthroplasty patients. This condition is multifactorial due to the type of bearing couple, head size and implant position. Subsequent periprosthetic osteolysis and soft tissue reactions, can lead to revision THA surgery. The periprosthetic synovial membrane (synovial-like interface membrane, SLIM) is used in diagnostics when the cause of implant failure is uncertain. Detailed analysis of synovial fluid and bone marrow could improve the diagnostic procedure and strengthen the cases for revision surgery and the underlying biology. A large number of research approaches on this topic have evolved and continue to be utilized in the clinic.


Assuntos
Líquido Sinovial , Membrana Sinovial , Humanos , Próteses e Implantes
4.
Adv Sci (Weinh) ; 10(30): e2303226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37649154

RESUMO

There is growing recognition that animal methods bias, a preference for animal-based methods where they are not necessary or where nonanimal-based methods may already be suitable, can impact the likelihood or timeliness of a manuscript being accepted for publication. Following April 2022 workshop about animal methods bias in scientific publishing, a coalition of scientists and advocates formed a Coalition to Illuminate and Address Animal Methods Bias (COLAAB). The COLAAB has developed this guide to be used by authors who use nonanimal methods to avoid and respond to animal methods bias from manuscript reviewers. It contains information that researchers may use during 1) study design, including how to find and select appropriate nonanimal methods and preregister a research plan, 2) manuscript preparation and submission, including tips for discussing methods and choosing journals and reviewers that may be more receptive to nonanimal methods, and 3) the peer review process, providing suggested language and literature to aid authors in responding to biased reviews. The author's guide for addressing animal methods bias in publishing is a living resource also available online at animalmethodsbias.org, which aims to help ensure fair dissemination of research that uses nonanimal methods and prevent unnecessary experiments on animals.


Assuntos
Revisão por Pares , Editoração , Animais , Revisão por Pares/métodos
5.
Arthritis Res Ther ; 25(1): 6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627721

RESUMO

OBJECTIVE: Platelet-rich plasma (PRP) therapy is increasingly popular to treat musculoskeletal diseases, including tendinopathies and osteoarthritis (OA). To date, it remains unclear to which extent PRP compositions are determined by the immune cell and cytokine profile of individuals or by the preparation method. To investigate this, we compared leukocyte and cytokine distributions of different PRP products to donor blood samples and assessed the effect of pro-inflammatory cytokines on chondrocytes. DESIGN: For each of three PRP preparations (ACP®, Angel™, and nSTRIDE® APS), products were derived using whole blood samples from twelve healthy donors. The cellular composition of PRP products was analyzed by flow cytometry using DURAClone antibody panels (DURAClone IM Phenotyping Basic and DURAClone IM T Cell Subsets). The MESO QuickPlex SQ 120 system was used to assess cytokine profiles (V-PLEX Proinflammatory Panel 1 Human Kit, Meso Scale Discovery). Primary human chondrocyte 2D and 3D in vitro cultures were exposed to recombinant IFN-γ and TNF-α. Proliferation and chondrogenic differentiation were quantitatively assessed. RESULTS: All three PRP products showed elevated portions of leukocytes compared to baseline levels in donor blood. Furthermore, the pro-inflammatory cytokines IFN-γ and TNF-α were significantly increased in nSTRIDE® APS samples compared to donor blood and other PRP products. The characteristics of all other cytokines and immune cells from the donor blood, including pro-inflammatory T cell subsets, were maintained in all PRP products. Chondrocyte proliferation was impaired by IFN-γ and enhanced by TNF-α treatment. Differentiation and cartilage formation were compromised upon treatment with both cytokines, resulting in altered messenger ribonucleic acid (mRNA) expression of collagen type 1A1 (COL1A1), COL2A1, and aggrecan (ACAN) as well as reduced proteoglycan content. CONCLUSIONS: Individuals with elevated levels of cells with pro-inflammatory properties maintain these in the final PRP products. The concentration of pro-inflammatory cytokines strongly varies between PRP products. These observations may help to unravel the previously described heterogeneous response to PRP in OA therapy, especially as IFN-γ and TNF-α impacted primary chondrocyte proliferation and their characteristic gene expression profile. Both the individual's immune profile and the concentration method appear to impact the final PRP product. TRIAL REGISTRATION: This study was prospectively registered in the Deutsches Register Klinischer Studien (DRKS) on 4 November 2021 (registration number DRKS00026175).


Assuntos
Osteoartrite , Plasma Rico em Plaquetas , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Condrócitos/metabolismo , Citocinas/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Plasma Rico em Plaquetas/metabolismo
6.
Nat Commun ; 14(1): 2034, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041138

RESUMO

Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFß and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFß, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.


Assuntos
Proteínas Hedgehog , Ossificação Heterotópica , Feminino , Humanos , Tecido Conjuntivo/metabolismo , Proteínas Hedgehog/metabolismo , Ossificação Heterotópica/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta
7.
Adv Sci (Weinh) ; 7(20): 2000412, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101844

RESUMO

Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.

8.
Front Immunol ; 10: 2232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620137

RESUMO

Arthroplasty ranks among the greatest achievements of surgical medicine, with total hip replacement termed "the operation of the century." Despite its wide success, arthroplasty bears risks, such as local reactions to implant derived wear and corrosion products. Prevalence of allergies across Western society increases and along the number of reported hypersensitivity reactions to orthopedic implant materials. In this context the main focus is on delayed hypersensitivity (DTH). This mechanism is mainly attributed to T cells and an overreaction of the adaptive immune system. Arthroplasty implant materials are in direct contact with bone marrow (BM), which is discussed as a secondary lymphoid organ. However, the mechanisms of sensitization toward implant wear remain elusive. Nickel and cobalt ions can form haptens with native peptides to activate immune cell receptors and are therefore common T helper allergens in cutaneous DTH. The rising prevalence of metal-related allergy in the general population and evidence for the immune-modulating function of BM allow for the assumption hypersensitivity reactions could occur in peri-implant BM. There is evidence that pro-inflammatory factors released during DTH reactions enhance osteoclast activity and inhibit osteoblast function, an imbalance characteristic for osteolysis. Even though some mechanisms are understood, hypersensitivity has remained a diagnosis of exclusion. This review aims to summarize current views on the pathomechanism of DTH in arthroplasty with emphasis on BM and discusses recent advances and future directions for basic research and clinical diagnostics.


Assuntos
Medula Óssea/imunologia , Hipersensibilidade Tardia/etiologia , Hipersensibilidade Tardia/imunologia , Metais/efeitos adversos , Próteses e Implantes/efeitos adversos , Animais , Artroplastia/efeitos adversos , Humanos , Metais/imunologia
9.
Front Immunol ; 10: 2758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827473

RESUMO

Delayed type hypersensitivity (DTH) reactions are considered infrequent complications in arthroplasty, but have been recognized to be associated with devastating morbidity and substantial decrease in quality of life of affected patients. Chronic inflammation of artificial joints and associated loss of peri-implant bone often require revision surgery. Methods for the diagnosis of implant-related DTH are available but infrequently considered to the full extent. Sequential diagnostics based on exclusion of septic complications, local and systemic metal level determination, lymphocyte transformation testing (LTT), and local T cell subset analysis are required for an unequivocal DTH diagnosis. Here, we report on a patient with a history of chronic rheumatoid arthritis and an unfavorable outcome of unilateral knee arthroplasty. This case illustrates pitfalls and difficulties in the course of recurrent inflammation following joint replacement. In the early course, suspicion of low-grade bacterial infection led to three two-stage revisions. Afterwards, the joint was proven to be sterile. However, metal level quantification revealed release of especially cobalt and chromium from the joint, LTT indicated persisting cobalt and nickel sensitization and subset analysis of T cells from the synovium suggested DTH as a root cause for the inflammatory symptoms. This report aims to recommend the depicted diagnostic algorithm as an adequate tool for future DTH detection. Yet, systemic to local subset ratios for effector memory and regulatory T cells should be derived from sufficient patient numbers to establish it as a diagnostic marker. Moreover, future prospects regarding implant-related DTH diagnostics are discussed. Therapeutic options for the portrayed patient are proposed, considering pharmaceutical, cell-therapeutic and surgical aspects. Patients who experience peri-implant inflammation but do not have obvious mechanical or infectious problems remain a diagnostic challenge and are at high risk of being treated inadequately. Since potentially sensitizing materials are regularly used in arthroplasty, it is essential to detect cases of acute DTH-derived inflammation of an artificial joint at early postoperative stages. This would reduce the severity of inflammation-related long-term consequences for affected patients and may avoid unnecessary revision surgery.


Assuntos
Artrite Reumatoide/cirurgia , Hipersensibilidade Tardia/diagnóstico , Hipersensibilidade Tardia/imunologia , Metais/imunologia , Idoso , Artrite Reumatoide/imunologia , Artroplastia do Joelho/efeitos adversos , Cromo/efeitos adversos , Cromo/imunologia , Cobalto/efeitos adversos , Cobalto/imunologia , Feminino , Humanos , Joelho/cirurgia , Prótese do Joelho/efeitos adversos , Metais/efeitos adversos , Níquel/efeitos adversos , Níquel/imunologia , Reoperação , Linfócitos T/imunologia
10.
J Cachexia Sarcopenia Muscle ; 10(3): 501-516, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30843380

RESUMO

Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/lesões , Doenças Musculares/terapia , Regeneração , Ensaios Clínicos como Assunto , Humanos , Músculo Esquelético/fisiopatologia , Doenças Musculares/complicações , Doenças Musculares/fisiopatologia , Qualidade de Vida , Lesões dos Tecidos Moles/complicações , Lesões dos Tecidos Moles/fisiopatologia , Lesões dos Tecidos Moles/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa