RESUMO
Chronic arsenic exposure during development is associated with alterations of chemical transmission and demyelination, which result in cognitive deficits and peripheral neuropathies. At the cellular level, arsenic toxicity involves increased generation of reactive species that induce severe cellular alterations such as DNA fragmentation, apoptosis, and lipid peroxidation. It has been proposed that arsenic-associated neurodegeneration could evolve to Alzheimer disease in later life.1,2 In this study, the effects of chronic exposure to inorganic arsenic (3 ppm by drinking water) in Wistar rats on the production and elimination of Amyloid-ß (Aß) were evaluated. Male Wistar rats were exposed to 3 ppm of arsenic in drinking water from fetal development until 4 months of age. After behavioral deficits induced by arsenic exposure through contextual fear conditioning were verified, the brains were collected for the determination of total arsenic by inductively coupled plasma-mass spectrometry, the levels of amyloid precursor protein and receptor for advanced glycation end products (RAGE) by Western blot analysis as well as their transcript levels by RT-qPCR, Aß(1-42) estimation by ELISA assay and the enzymatic activity of ß-secretase (BACE1). Our results demonstrate that chronic arsenic exposure induces behavioral deficits accompanied of higher levels of soluble and membranal RAGE and the increase of Aß(1-42) cleaved. In addition, BACE1 enzymatic activity was increased, while immunoblot assays showed no differences in the low-density lipoprotein receptor-related protein 1 (LRP1) receptor among groups. These results provide evidence of the effects of arsenic exposure on the production of Aß(1-42) and cerebral amyloid clearance through RAGE in an in vivo model that displays behavioral alterations. This work supports the hypothesis that early exposure to metals may contribute to neurodegeneration associated with amyloid accumulation.
Assuntos
Peptídeos beta-Amiloides/biossíntese , Arsênio/administração & dosagem , Arsênio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fragmentos de Peptídeos/biossíntese , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos WistarRESUMO
MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide's bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy.
Assuntos
Proteínas de Plantas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/farmacologia , Vetores Genéticos , Testes de Sensibilidade Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/genética , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/genéticaRESUMO
Coronavirus (CoV) diseases, including Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) have gained in importance worldwide, especially with the current COVID-19 pandemic caused by SARS-CoV-2. Due to the huge global demand, various types of vaccines have been developed, such as more traditional attenuated or inactivated viruses, subunit and VLP-based vaccines, as well as novel DNA and RNA vaccines. Nonetheless, emerging new COVID-19 variants are necessitating continuous research on vaccines, including these produced in plants, either via stable expression in transgenic or transplastomic plants or transient expression using viral vectors or agroinfection. Plant systems provide low cost, high scalability, safety and capacity to produce multimeric or glycosylated proteins. To date, from among CoVs antigens, spike and capsid proteins have been produced in plants, mostly using transient expression systems, at the additional advantage of rapid production. Immunogenicity of plant-produced CoVs proteins was positively evaluated after injection of purified antigens. However, this review indicates that plant-produced CoVs proteins or their carrier-fused immunodominant epitopes can be potentially applied also as mucosal vaccines, either after purification to be administered to particular membranes (nasal, bronchus mucosa) associated with the respiratory system, or as oral vaccines obtained from partly processed plant tissue.
RESUMO
In this study, hybrid polyacrylic acid and Schizochytrium sp. microalgae (PAA/Schizo) microgels were synthesized by inverse emulsion assisted by ultrasound using the cell wall fraction as crosslinker. Physicochemical characterization of PAA/Schizo microgels revealed polymeric spherical particles (288 ± 39 nm) and were deemed stable and negatively charged. The produced microgels are not inherently toxic as cell viability was sustained above 80% when mice splenocytes were exposed to concentrations ranging 10-900 µg/mL. PAA/Schizo microgels were evaluated as antigen delivery nanovehicle by adsorbing bovine serum albumin (BSA); with a loading efficiency of 72% and loading capacity of 362 µg/mg. Overall, intranasally-immunized BALB/c mice showed null IgG or IgA responses against PAA/Schizo microgel-BSA, whereas soluble BSA induced significant humoral responses in systemic and mucosal compartments. Splenocytes proliferation assay upon BSA stimulus revealed positive CD4+ T cells-proliferation response in PAA/Schizo microgels-BSA group. Thus, PAA/Schizo microgels constitute functional antigen delivery vehicles of simple and ecofriendly synthesis. Moreover, the use of cell wall fraction as cross-linker agent provides an alternative use for the generation of high-value products using residual algae biomass from the oil industry. Our data suggests that the PAA/Schizo microgels are potential antigen delivery vehicles for immunotherapy development.
RESUMO
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. Although the overall incidence is less than 10 per 100,000 individuals, its poor prognosis and low survival rate make GBM a crucial public health issue. The main challenges for GBM treatment are related to tumor location and its complex and heterogeneous biology. In this sense, a broad range of nanoparticles with different sizes, architectures, and surface properties, have been engineered as brain drug delivery systems. Among them, lipid-based nanoparticles, such as liposomes, have been pointed out as promising materials to deliver antitumoral drugs to the central nervous system and thus, to improve brain drug targeting and therapeutic efficiency. Here, we describe the synthesis and general characteristics of lipid-based nanoparticles, as well as evidence in the past 5 years regarding their potential use to treat GBM.
Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Animais , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patologia , Permeabilidade Capilar , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Lipossomos/farmacocinética , Nanopartículas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Alzheimer's disease (AD) is the most common neurodegenerative disease, where ß-amyloid (Aß) plays a key role in forming conglomerated senile plaques. The receptor of advanced glycation end products (RAGE) is considered a therapeutic target since it transports Aß into the central nervous system, favoring the pathology progression. Due to the lack of effective therapies for AD, several therapeutic approaches are under development, being vaccines considered a promising alternative. Herein, the use of the Algevir system was explored to produce in the Schizochytrium sp. microalga the LTB:RAGE vaccine candidate. Algevir relies in an inducible geminiviral vector and led to yields of up to 380 µg LTB:RAGE/g fresh weight biomass at 48-h post-induction. The Schizochytrium-produced LTB:RAGE vaccine retained its antigenic activity and was highly stable up to temperatures of 60 °C. These data demonstrate the potential of Schizochytrium sp. as a platform for high production of thermostable recombinant antigens useful for vaccination against AD.