RESUMO
BACKGROUND: The optimal cardiovascular assessment of liver transplant (LT) candidates is unclear. We aimed to evaluate the performance of CT-based coronary tests (coronary artery calcium score [CACS] and coronary CT angiography [CCTA]) and a modification of the CAD-LT score (mCAD-LT, excluding family history of CAD) to diagnose significant coronary artery disease (CAD) before LT and predict the incidence of post-LT cardiovascular events (CVE). METHODS: We retrospectively analysed a single-centre cohort of LT candidates who underwent non-invasive tests; invasive coronary angiography (ICA) was performed depending on the results of non-invasive tests. mCAD-LT was calculated in all patients. RESULTS: Six-hundred-and-thirty-four LT candidates were assessed and 351 of them underwent LT. CACS, CCTA and ICA were performed in 245, 123 and 120 LT candidates, respectively. Significant CAD was found in 30% of patients undergoing ICA. The AUROCs of mCAD-LT (.722) and CCTA (.654) were significantly higher than that of CACS (.502) to predict the presence of significant CAD. Specificity of the tests ranged between 31% for CCTA and 53% for CACS. Among patients who underwent LT, CACS ≥ 400 and mCAD-LT were independently associated with the incidence of CVE; in patients who underwent CCTA before LT, significant CAD at CCTA also predicted post-LT CVE. CONCLUSION: In this cohort, mCAD-LT score and CT-based tests detect the presence of significant CAD in LT candidates, although they tend to overestimate it. Both mCAD-LT score and CT-based tests classify LT recipients according to their risk of post-LT CVE and can be used to improve post-LT risk mitigation.
Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Transplante de Fígado , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Transplante de Fígado/efeitos adversos , Medição de Risco , Idoso , Valor Preditivo dos Testes , Calcificação Vascular/diagnóstico por imagem , Adulto , Fatores de RiscoRESUMO
AIMS: Non-invasive myocardial scar characterization with cardiac magnetic resonance (CMR) has been shown to accurately identify conduction channels and can be an important aid for ventricular tachycardia (VT) ablation. A new mapping method based on targeting deceleration zones (DZs) has become one of the most commonly used strategies for VT ablation procedures. The aim of the study was to analyse the capability of CMR to identify DZs and to find predictors of arrhythmogenicity in CMR channels. METHODS AND RESULTS: Forty-four consecutive patients with structural heart disease and VT undergoing ablation after CMR at a single centre (October 2018 to July 2021) were included (mean age, 64.8 ± 11.6 years; 95.5% male; 70.5% with ischaemic heart disease; a mean ejection fraction of 32.3 ± 7.8%). The characteristics of CMR channels were analysed, and correlations with DZs detected during isochronal late activation mapping in both baseline maps and remaps were determined. Overall, 109 automatically detected CMR channels were analysed (2.48 ± 1.15 per patient; length, 57.91 ± 63.07â mm; conducting channel mass, 2.06 ± 2.67â g; protectedness, 21.44 ± 25.39â mm). Overall, 76.1% of CMR channels were associated with a DZ. A univariate analysis showed that channels associated with DZs were longer [67.81 ± 68.45 vs. 26.31 ± 21.25â mm, odds ratio (OR) 1.03, P = 0.010], with a higher border zone (BZ) mass (2.41 ± 2.91 vs. 0.87 ± 0.86â g, OR 2.46, P = 0.011) and greater protectedness (24.97 ± 27.72 vs. 10.19 ± 9.52â mm, OR 1.08, P = 0.021). CONCLUSION: Non-invasive detection of targets for VT ablation is possible with CMR. Deceleration zones found during electroanatomical mapping accurately correlate with CMR channels, especially those with increased length, BZ mass, and protectedness.
Assuntos
Ablação por Cateter , Taquicardia Ventricular , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgia , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Frequência Cardíaca/fisiologia , Arritmias Cardíacas , Cicatriz/patologia , Ablação por Cateter/métodosRESUMO
INTRODUCTION: Prediction of recurrent ventricular arrhythmia (VA) in survivors of an out-of-hospital cardiac arrest (OHCA) is important, but currently difficult. Risk of recurrence may be related to presence of myocardial scarring assessed with late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Our study aims to characterize myocardial scarring as defined by LGE-CMR in survivors of a VA-OHCA and investigate its potential role in the risk of new VA events. METHODS: Between 2015 and 2022, a total of 230 VA-OHCA patients without ST-segment elevation myocardial infarction had CMR before implantable cardioverter-defibrillator implantation for secondary prevention at Copenhagen University Hospital, Rigshospitalet, and Hospital Clínic, University of Barcelona, of which n = 170 patients had a conventional (no LGE protocol) CMR and n = 60 patients had LGE-CMR (including LGE protocol). Scar tissue including core, border zone (BZ) and BZ channels were automatically detected by specialized investigational software in patients with LGE-CMR. The primary endpoint was recurrent VA. RESULTS: After exclusion, n = 52 VA-OHCA patients with LGE-CMR and a mean left ventricular ejection fraction of 49 ± 16% were included, of which 18 (32%) patients reached the primary endpoint of VA. Patients with recurrent VA in exhibited greater scar mass, core mass, BZ mass, and presence of BZ channels compared with patients without recurrent VA. The presence of BZ channels identified patients with recurrent VA with 67% sensitivity and 85% specificity (area under the ROC curve (AUC) 0.76; 95% CI: 0.63-0.89; p < .001) and was the strongest predictor of the primary endpoint. CONCLUSIONS: The presence of BZ channels was the strongest predictor of recurrent VA in patients with an out of-hospital cardiac arrest and LGE-CMR.
Assuntos
Cicatriz , Parada Cardíaca Extra-Hospitalar , Humanos , Cicatriz/diagnóstico por imagem , Cicatriz/etiologia , Meios de Contraste , Volume Sistólico , Parada Cardíaca Extra-Hospitalar/diagnóstico , Parada Cardíaca Extra-Hospitalar/terapia , Função Ventricular Esquerda , Gadolínio , Arritmias Cardíacas , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Valor Preditivo dos TestesRESUMO
BACKGROUND: Patients with ST-segment elevation myocardial infarction (STEMI), especially elderly individuals, have an increased risk of readmission for acute heart failure (AHF). PURPOSE: To study the impact of left ventricular ejection fraction (LVEF) by MRI to predict AHF in elderly (>70 years) and nonelderly patients after STEMI. STUDY TYPE: Prospective. POPULATION: Multicenter registry of 759 reperfused STEMI patients (23.3% elderly). FIELD STRENGTH/SEQUENCE: 1.5-T. Balanced steady-state free precession (cine imaging) and segmented inversion recovery steady-state free precession (late gadolinium enhancement) sequences. ASSESSMENT: One-week MRI-derived LVEF (%) was quantified. Sequential MRI data were recorded in 579 patients. Patients were categorized according to their MRI-derived LVEF as preserved (p-LVEF, ≥50%), mildly reduced (mr-LVEF, 41%-49%), or reduced (r-LVEF, ≤40%). Median follow-up was 5 [2.33-7.54] years. STATISTICAL TESTS: Univariable (Student's t, Mann-Whitney U, chi-square, and Fisher's exact tests) and multivariable (Cox proportional hazard regression) comparisons and continuous-time multistate Markov model to analyze transitions between LVEF categories and to AHF. Hazard ratios (HR) with 95% confidence intervals (CIs) were computed. P < 0.05 was considered statistically significant. RESULTS: Over the follow-up period, 79 (10.4%) patients presented AHF. MRI-LVEF was the most robust predictor in nonelderly (HR 0.94 [0.91-0.98]) and elderly patients (HR 0.94 [0.91-0.97]). Elderly patients had an increased AHF risk across the LVEF spectrum. An excess of risk (compared to p-LVEF) was noted in patients with r-LVEF both in nonelderly (HR 11.25 [5.67-22.32]) and elderly patients (HR 7.55 [3.29-17.34]). However, the mr-LVEF category was associated with increased AHF risk only in elderly patients (HR 3.66 [1.54-8.68]). Less transitions to higher LVEF states (n = 19, 30.2% vs. n = 98, 53%) and more transitions to AHF state (n = 34, 53.9% vs. n = 45, 24.3%) were observed in elderly than nonelderly patients. DATA CONCLUSION: MRI-derived p-LVEF confers a favorable prognosis and r-LVEF identifies individuals at the highest risk of AHF in both elderly and nonelderly patients. Nevertheless, an excess of risk was also found in the mr-LVEF category in the elderly group. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.
Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Idoso , Função Ventricular Esquerda , Volume Sistólico , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Meios de Contraste , Estudos Prospectivos , Readmissão do Paciente , Gadolínio , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/complicações , PrognósticoRESUMO
AIMS: Heterogeneous tissue channels (HTCs) detected by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) are related to ventricular arrhythmias, but there are few published data about their arrhythmogenic characteristics. METHODS AND RESULTS: We enrolled 34 consecutive patients with ischaemic and non-ischaemic cardiomyopathy who were referred for ventricular tachycardia (VT) ablation. LGE-CMR was performed prior to ablation, and the HTCs were analyzed. Arrhythmogenic HTCs linked to induced VT were identified during the VT ablation procedure. The characteristics of arrhythmogenic HTCs were compared with those of non-arrhythmogenic HTCs. Three patients were excluded due to low-quality LGE-CMR images. A total of 87 HTCs were identified on LGE-CMR in 31 patients (age:63.8 ± 12.3 years; 96.8% male; left ventricular ejection fraction: 36.1 ± 10.7%). Of the 87 HTCs, only 31 were considered arrhythmogenic because of their relation to a VT isthmus. The HTCs related to a VT isthmus were longer [64.6 ± 49.4 vs. 32.9 ± 26.6 mm; OR: 1.02; 95% CI: (1.01-1.04); P < 0.001] and had greater mass [2.5 ± 2.2 vs. 1.2 ± 1.2 grams; OR: 1.62; 95% CI: (1.18-2.21); P < 0.001], a higher degree of protectedness [26.19 ± 19.2 vs. 10.74 ± 8.4; OR 1.09; 95% CI: (1.04-1.14); P < 0.001], higher transmurality [number of wall layers with CCs: 3.8 ± 2.4 vs. 2.4 ± 2.0; OR: 1.31; 95% CI: (1.07-1.60); P = 0.008] and more ramifications [3.8 ± 2.0 vs. 2.7 ± 1.1; OR: 1.59; 95% CI: (1.15-2.19); P = 0.002] than non-arrhythmogenic HTCs. Multivariate logistic regression analysis revealed that protectedness was the strongest predictor of arrhythmogenicity. CONCLUSION: The protectedness of an HTC identified by LGE-CMR is strongly related to its arrhythmogenicity during VT ablation.
Assuntos
Ablação por Cateter , Taquicardia Ventricular , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Cicatriz/etiologia , Cicatriz/complicações , Meios de Contraste , Gadolínio , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Ablação por Cateter/efeitos adversosRESUMO
BACKGROUND: Magnetic resonance imaging (MRI) is the most accurate imaging technique for left ventricular ejection fraction (LVEF) quantification, but as yet the prognostic value of LVEF assessment at any time after ST-segment elevation myocardial infarction (STEMI) for subsequent major adverse cardiac event (MACE) prediction is uncertain. PURPOSE: To explore the prognostic impact of MRI-derived LVEF at any time post-STEMI to predict subsequent MACE (cardiovascular death or re-admission for acute heart failure). STUDY TYPE: Prospective. POPULATION: One thousand thirteen STEMI patients were included in a multicenter registry. FIELD STRENGTH/SEQUENCE: 1.5-T. Balanced steady-state free precession (cine imaging) and segmented inversion recovery steady-state free precession (late gadolinium enhancement) sequences. ASSESSMENT: Post-infarction MRI-derived LVEF (reduced [r]: <40%; mid-range [mr]: 40%-49%; preserved [p]: ≥50%) was sequentially quantified at 1 week and after >3 months of follow-up. STATISTICAL TESTS: Multi-state Markov model to determine the prognostic value of each LVEF state (r-, mr- or p-) at any time point assessed to predict subsequent MACE. A P-value <0.05 was considered to be statistically significant. RESULTS: During a 6.2-year median follow-up, 105 MACE (10%) were registered. Transitions toward improved LVEF predominated and only r-LVEF (at any time assessed) was significantly related to a higher incidence of subsequent MACE. The observed transitions from r-LVEF, mr-LVEF, and p-LVEF states to MACE were: 15.3%, 6%, and 6.7%, respectively. Regarding the adjusted transition intensity ratios, patients in r-LVEF state were 4.52-fold more likely than those in mr-LVEF state and 5.01-fold more likely than those in p-LVEF state to move to MACE state. Nevertheless, no significant differences were found in transitions from mr-LVEF and p-LVEF states to MACE state (P-value = 0.6). DATA CONCLUSION: LVEF is an important MRI index for simple and dynamic post-STEMI risk stratification. Detection of r-LVEF by MRI at any time during follow-up identifies a subset of patients at high risk of subsequent events. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Intervenção Coronária Percutânea/efeitos adversos , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Sistema de Registros , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/etiologia , Volume Sistólico , Função Ventricular EsquerdaRESUMO
AIMS: To non-invasively characterize, by means of late gadolinium enhancement cardiac magnetic resonance (LGE-CMR), scar differences, and potential variables associated with ventricular tachycardia (VT) occurrence in chronic post-myocardial infarction (MI) patients. METHODS AND RESULTS: A case-control study was designed through retrospective LGE-CMR data analysis of chronic post-MI patients (i) consecutively referred for VT substrate ablation after a first VT episode (n = 66) and (ii) from a control group (n = 84) with no arrhythmia evidence. The myocardium was characterized differentiating core, border zone (BZ), and BZ channels (BZCs) using the ADAS 3D post-processing imaging platform. Clinical and scar characteristics, including a novel parameter, the BZC mass, were compared between both groups. One hundred and fifty post-MI patients were included. Four multivariable Cox proportional hazards regression models were created for total scar mass, BZ mass, core mass, and BZC mass, adjusting them by age, sex, and left ventricular ejection fraction (LVEF). A cut-off of 5.15 g of BZC mass identified the cases with 92.4% sensitivity and 86.9% specificity [area under the ROC curve (AUC) 0.93 (0.89-0.97); P < 0.001], with a significant increase in the AUC compared to other scar parameters (P < 0.001 for all pairwise comparisons). Adding BZC mass to LVEF allowed to reclassify 33.3% of the cases and 39.3% of the controls [net reclassification improvement = 0.73 (0.71-0.74)]. CONCLUSIONS: The mass of BZC is the strongest independent variable associated with the occurrence of sustained monomorphic ventricular tachycardia in post-MI patients after adjustment for age, sex, and LVEF. Border zone channel mass measurement could permit a more accurate VT risk stratification than LVEF in chronic post-MI patients.
Assuntos
Infarto do Miocárdio , Taquicardia Ventricular , Arritmias Cardíacas/complicações , Arritmias Cardíacas/etiologia , Estudos de Casos e Controles , Cicatriz , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Estudos Retrospectivos , Volume Sistólico , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/etiologia , Função Ventricular EsquerdaRESUMO
BACKGROUND: older patients with ST-segment elevation myocardial infarction (STEMI) represent a very high-risk population. Data on the prognostic value of cardiac magnetic resonance (CMR) in this scenario are scarce. METHODS: the registry comprised 247 STEMI patients over 70 years of age treated with percutaneous intervention and included in a multicenter registry. Baseline characteristics, echocardiographic parameters and CMR-derived left ventricular ejection fraction (LVEF, %), infarct size (% of left ventricular mass) and microvascular obstruction (MVO, number of segments) were prospectively collected. The additional prognostic power of CMR was assessed using adjusted C-statistic, net reclassification index (NRI) and integrated discrimination improvement index (IDI). RESULTS: during a 4.8-year mean follow-up, the number of first major adverse cardiac events (MACE) was 66 (26.7%): 27 all-cause deaths and 39 re-admissions for acute heart failure. Predictors of MACE were GRACE score (HR 1.03 [1.02-1.04], P < 0.001), CMR-LVEF (HR 0.97 [0.95-0.99] per percent increase, P = 0.006) and MVO (HR 1.24 [1.09-1.4] per segment, P = 0.001). Adding CMR data significantly improved MACE prediction compared to the model with baseline and echocardiographic characteristics (C-statistic 0.759 [0.694-0.824] vs. 0.685 [0.613-0.756], NRI = 0.6, IDI = 0.08, P < 0.001). The best cut-offs for independent variables were GRACE score > 155, LVEF < 40% and MVO ≥ 2 segments. A simple score (0, 1, 2, 3) based on the number of altered factors accurately predicted the MACE per 100 person-years: 0.78, 5.53, 11.51 and 78.79, respectively (P < 0.001). CONCLUSIONS: CMR data contribute valuable prognostic information in older patients submitted to undergo CMR soon after STEMI. The Older-STEMI-CMR score should be externally validated.
Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Idoso , Idoso de 80 Anos ou mais , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/etiologia , Volume Sistólico , Prognóstico , Função Ventricular Esquerda , Intervenção Coronária Percutânea/efeitos adversos , Valor Preditivo dos Testes , Espectroscopia de Ressonância MagnéticaRESUMO
AIMS: Ventricular tachycardia (VT) substrate-based ablation has an increasing role in patients with structural heart disease-related VT. VT is linked to re-entry in relation to myocardial scarring with areas of conduction block (core scar) and areas of slow conduction [border zone (BZ)]. VT substrate can be analysed by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Our study aims to analyse the role of LGE-CMR in identifying predictors of VT recurrence after ablation. METHODS AND RESULTS: We analysed 110 consecutive patients who underwent VT ablation from 2013 to 2018. All patients underwent a preprocedural LGE-CMR, and in 94 patients (85.5%), the CMR was used to aid the ablation. All LGE-CMR images were semi-automatically processed using dedicated software to detect scarring and conducting channels. After a median follow-up of 2.7 ± 1.6 years, the overall VT recurrence was 41.8% with an implantable cardioverter-defibrillator shock reduction from 43.6% to 28.2% before and after ablation, respectively. The amount of BZ (26.6 ± 13.9 vs. 19.6 ± 9.7 g, P = 0.012), the total amount of scarring (37.1 ± 18.2 vs. 29 ± 16.3 g, P = 0,033), and left ventricular (LV) mass (168.3 ± 53.3 vs. 152.3 ± 46.4 g, P < 0.001) were associated with VT recurrence. LGE septal distribution [62.5% vs. 37.8%; hazard ratio (HR) 1.67 (1.02-3.93), P = 0.044], channels with transmural path [66.7% vs. 31.4%, HR 3.25 (1.70-6.23), P < 0.001], and midmural channels [54.3% vs. 27.6%, HR 2.49 (1.21-5.13), P = 0.013] were related with VT recurrence. Multivariate analysis showed that the presence of septal LGE [HR 3.67 (1.60-8.38), P = 0.002], transmural channels [HR 2.32 (1.15-4.72), P = 0.019], and LV mass [HR 1.01 (1.005-1.019), P = 0.002] were independent predictors of VT recurrence. CONCLUSION: Pre-procedural LGE-CMR is a helpful and feasible technique to identify patients with high risk of VT recurrence after ablation. LV mass, septal LGE distribution, and transmural channels were predictive factors of post-ablation VT recurrence.
Assuntos
Ablação por Cateter , Taquicardia Ventricular , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Recidiva , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgiaRESUMO
AIMS: Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) permits characterizing ischaemic scars, detecting heterogeneous tissue channels (HTCs) which constitute the arrhythmogenic substrate (AS). Late gadolinium enhancement cardiac magnetic resonance also improves the arrhythmia-free survival when used to guide ventricular tachycardia (VT) substrate ablation. However, its availability may be limited. We sought to evaluate the performance of multidetector cardiac computed tomography (MDCT) imaging in identifying HTCs detected by LGE-CMR in ischaemic patients undergoing VT substrate ablation. METHODS AND RESULTS: Thirty ischaemic patients undergoing both LGE-CMR and MDCT before VT substrate ablation were included. Using a dedicated post-processing software, two blinded operators, assigned either to LGE-CMR or MDCT analysis, characterized the presence of CMR and computed tomography (CT) channels, respectively. Cardiac magnetic resonance channels were classified as endocardial (layers < 50%), epicardial (layers ≥ 50%), or transmural. Cardiac magnetic resonance- vs. CT-channel concordance was considered when showing the same orientation and American Heart Association (AHA) segment. Mean age was 69 ± 10 years; 90% were male. Mean left ventricular ejection fraction was 35 ± 10%. All patients had CMR channels (n = 76), whereas only 26/30 (86.7%) had CT channels (n = 91). Global sensitivity (Se) and positive predictive values for detecting CMR channels were 61.8% and 51.6%, respectively. MDCT performance improved in patients with epicardial CMR channels (Se 80.5%) and transmural scars (Se 72.2%). In 4/11 (36%) patients with subendocardial myocardial infarction (MI), MDCT was unable to identify the AS. CONCLUSIONS: Compared to LGE-CMR, myocardial wall thickness assessment using MDCT fails to detect the presence of AS in 36% of patients with subendocardial MI, showing modest sensitivity identifying HTCs but a better performance in patients with transmural scars.
Assuntos
Meios de Contraste , Taquicardia Ventricular , Idoso , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Volume Sistólico , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgia , Função Ventricular EsquerdaRESUMO
BACKGROUND: Left atrial wall thickness (LAWT) has been related to pulmonary vein (PV) reconnections after atrial fibrillation (AF) ablation. The aim was to integrate 3D-LAWT maps in the navigation system and analyze the relationship with local reconnection sites during AF-redo procedures. METHODS: Consecutive patients referred for AF-redo ablation were included. Procedure was performed using a single catheter technique. LAWT maps obtained from multidetector computerized tomography (MDCT) were imported into the navigation system. LAWT of the circumferential PV line, the reconnected segment and the reconnected point, were analyzed. RESULTS: Sixty patients [44 (73%) male, age 61 ± 10 years] were included. All reconnected veins were isolated using a single catheter technique with 55 min (IQR 47-67) procedure time and 75 s (IQR 50-120) fluoroscopy time. Mean LAWT of the circumferential PV line was 1.46 ± 0.22 mm. The reconnected segment was thicker than the rest of segments of the circumferential PV line (2.05 + 0.86 vs. 1.47 + 0.76, p < .001 for the LPVs; 1.55 + 0.57 vs. 1.27 + 0.57, p < .001 for the RPVs). Mean reconnection point wall thickness (WT) was at the 82nd percentile of the circumferential line in the LPVs and at the 82nd percentile in the RPVs. CONCLUSION: A single catheter technique is feasible and efficient for AF-redo procedures. Integrating the 3D-LAWT map into the navigation system allows a direct periprocedural estimation of the WT at any point of the LA. Reconnection points were more frequently present in thicker segments of the PV line. The use of 3D-LAWT maps can facilitate reconnection point identification during AF-redo ablation.
Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Átrios do Coração/anatomia & histologia , Átrios do Coração/diagnóstico por imagem , Veias Pulmonares/cirurgia , Tomografia Computadorizada por Raios X , Fibrilação Atrial/diagnóstico por imagem , Feminino , Fluoroscopia , Humanos , Masculino , Pessoa de Meia-Idade , Veias Pulmonares/diagnóstico por imagem , Recidiva , ReoperaçãoRESUMO
AIMS: Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is able to depict CCs and increase ablation success. Most patients undergoing VT ablation have an implantable cardioverter-defibrillator (ICD) that can cause image artefacts in LGE-CMR. Recently wideband (WB) LGE-CMR sequence has demonstrated to decrease these artefacts. The aim of this study is to analyse accuracy of WB-LGE-CMR in identifying the CC entrances. METHODS AND RESULTS: Thirteen consecutive ICD-patients who underwent VT ablation after WB-LGE-CMR were included. Number and location of CC entrances in three-dimensional EAM and in WB-LGE-CMR reconstruction were compared. Concordance was compared with a historical cohort matched by cardiomyopathy, scar location, and age (26 patients) with LGE-CMR prior to ICD and VT ablation. In WB-CMR group, 101 and 93 CC entrances were identified in EAM and WB-LGE-CMR, respectively. In historical cohort, 179 CC entrances were identified in both EAM and LGE-CMR. The EAM/CMR concordance was 85.1% and 92.2% in the WB and historical group, respectively (P = 0.66). There were no differences in false-positive rate (CC entrances detected in CMR and absent in EAM: 7.5% vs 7.8% in WB vs. conventional CMR, P = 0.92) nor in false-negative rate (CC entrances present in EAM not detected in CMR: 14.9% vs.7.8% in WB vs. conventional CMR, P = 0.23). Epicardial CCs was predictor of poor CMR/EAM concordance (OR 2.15, P = 0.031). CONCLUSION: Use of WB-LGE-CMR sequence in ICD-patients allows adequate VT substrate characterization to guide VT ablation with similar accuracy than conventional LGE-CMR in patients without an ICD.
Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Miocárdio/patologia , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/patologia , Taquicardia Ventricular/cirurgiaRESUMO
Immunoglobulin light-chain (AL) amyloidosis is a systemic disease characterized by the production and deposition of light chain-derived amyloid fibrils in different organs. Prompt treatment directed to the underlying plasma cell clone is crucial in order to achieve a rapid, deep and durable hematologic response. The decrease in the production of the amyloidogenic light chains is a required condition to obtain the organ response, which is commonly delayed. Meanwhile, supportive treatment is aimed to maintain quality of life of these patients and preserve their involved organs' function. From simple measures, such as salt restriction or compressive stockings, to very complex interventions, such as heart transplantation in very selected patients with isolated severe cardiac involvement, this supportive care is essential and has to be necessarily included in the multidisciplinary management of this disease.
Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina/terapia , Cuidados Paliativos , Gerenciamento Clínico , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Amiloidose de Cadeia Leve de Imunoglobulina/etiologia , Especificidade de Órgãos , Cuidados Paliativos/métodosRESUMO
AIMS: Left ventricular (LV) outflow tract ventricular arrhythmias (OTVA) are associated with hypertension (HT), older age, and LV dysfunction, suggesting that LV overload plays a role in the aetiopathogenesis. We hypothesized that anatomical modifications of the LV outflow tract (LVOT) could predict left vs. right OTVA site of origin (SOO). METHODS AND RESULTS: Fifty-six (32 men, 53 ± 18 years old) consecutive patients referred for OTVA ablation were included. Cardiac multidetector computed tomography was performed before ablation and then imported to the CARTO system to aid the mapping and ablation procedure. Anatomical characteristics of the aortic root as well as aortopulmonary valvular planar angulation (APVPA) were analysed. The LV was the OTVA SOO (LVOT-VA) in 32 (57%) patients. These patients were more frequently male (78% vs. 22%, P = 0.001), older (57 ± 18 vs. 47 ± 18 years, P = 0.055), and more likely to have HT (59% vs. 21%, P = 0.004), compared to right OTVA patients. Aortopulmonary valvular planar angulation was higher in LVOT-VA patients (68 ± 5° vs. 55 ± 6°, respectively; P < 0.001). Absolute size of all aortic root diameters was associated with LVOT origin. However, after indexing by body surface area, only sinotubular junction diameter maintained a significant association (P = 0.049). Multivariable analysis showed that APVPA was an independent predictor of LVOT origin. Aortopulmonary valvular planar angulation ≥62° reached 94% sensitivity and 83% specificity (area under the curve 0.95) for predicting LVOT origin. CONCLUSIONS: The measurement of APVPA as a marker of chronic LV overload is useful for the prediction of left vs. right ventricular OTVA origin.
Assuntos
Ventrículos do Coração/diagnóstico por imagem , Tomografia Computadorizada Multidetectores , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda , Função Ventricular Direita , Complexos Ventriculares Prematuros/etiologia , Remodelação Ventricular , Potenciais de Ação , Adulto , Idoso , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Feminino , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/fisiopatologia , Fatores de Risco , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/fisiopatologia , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia , Complexos Ventriculares Prematuros/cirurgiaRESUMO
AIMS: Ablation of frequent premature ventricular complexes (PVCs) improves left ventricular ejection fraction in patients with left ventricular (LV) systolic dysfunction. This study aims to evaluate the long-term hard outcomes and potential prognostic variables in this population. METHODS AND RESULTS: Prospective multicentre study including 101 consecutive patients [56 ± 12 years old, 62 (61%) men] with LV systolic dysfunction and frequent PVCs who underwent PVC ablation before November 2015. The last evaluation performed was considered the long-term follow-up (LTFUP) evaluation. Mean follow-up was 34 ± 16 months (range 24-84 months). Ablation was successful in 95 (94%) patients. There was a significant reduction in the PVC burden from 21 ± 12% at baseline to 3.8 ± 6% at LTFUP, P < 0.001. Left ventricular ejection fraction improved from 32 ± 8% at baseline to 39 ± 12% at LTFUP (P < 0.001) and New York Heart Association class from 2.2 ± 0.6% to 1.3 ± 0.6% (P < 0.001). Brain natriuretic peptide levels decreased from 136 (78-321) to 68 (32-144) pg/mL (P = 0.007). Most of this improvement occurs during the first 6 months after ablation. Persistent abolition of at least 18 points of the baseline PVC burden was independently and inversely associated with the composite endpoint of cardiac mortality, cardiac transplantation, or hospitalization for heart failure during follow-up [hazard ratio 0.18 (0.05-0.66), P = 0.01]. CONCLUSION: In patients with LV systolic dysfunction, ablation of frequent PVCs induces a significant improvement in functional, structural, and neurohormonal status, which persists at LTFUP. A sustained reduction in the baseline PVC burden is associated with a lower risk of cardiac mortality, cardiac transplantation, or hospitalization for heart failure during follow-up.
Assuntos
Ablação por Cateter/métodos , Disfunção Ventricular Esquerda/cirurgia , Complexos Ventriculares Prematuros/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Volume Sistólico , Sístole , Disfunção Ventricular Esquerda/mortalidade , Disfunção Ventricular Esquerda/fisiopatologia , Complexos Ventriculares Prematuros/mortalidade , Complexos Ventriculares Prematuros/fisiopatologiaRESUMO
PURPOSE: To assess predictors of reverse remodeling by using cardiac magnetic resonance (MR) imaging soon after ST-segment-elevation myocardial infarction (STEMI). MATERIALS AND METHODS: Written informed consent was obtained from all patients, and the study protocol was approved by the institutional committee on human research, ensuring that it conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Five hundred seven patients (mean age, 58 years; age range, 24-89 years) with a first STEMI were prospectively studied. Infarct size and microvascular obstruction (MVO) were quantified at late gadolinium-enhanced imaging. Reverse remodeling was defined as a decrease in left ventricular (LV) end-systolic volume index (LVESVI) of more than 10% from 1 week to 6 months after STEMI. For statistical analysis, a simple (from a clinical perspective) multiple regression model preanalyzing infarct size and MVO were applied via univariate receiver operating characteristic techniques. RESULTS: Patients with reverse remodeling (n = 211, 42%) had a lesser extent (percentage of LV mass) of 1-week infarct size (mean ± standard deviation: 18% ± 13 vs 23% ± 14) and MVO (median, 0% vs 0%; interquartile range, 0%-1% vs 0%-4%) than those without reverse remodeling (n = 296, 58%) (P < .001 in pairwise comparisons). The independent predictors of reverse remodeling were infarct size (odds ratio, 0.98; 95% confidence interval [CI]: 0.97, 0.99; P = .04) and MVO (odds ratio, 0.92; 95% CI: 0.86, 0.99; P = .03). Once infarct size and MVO were dichotomized by using univariate receiver operating characteristic techniques, the only independent predictor of reverse remodeling was the presence of simultaneous nonextensive infarct-size MVO (infarct size < 30% of LV mass and MVO < 2.5% of LV mass) (odds ratio, 3.2; 95% CI: 1.8, 5.7; P < .001). CONCLUSION: Assessment of infarct size and MVO with cardiac MR imaging soon after STEMI enables one to make a decision in the prediction of reverse remodeling.
Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/patologia , Remodelação Ventricular , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares , Valor Preditivo dos Testes , Estudos Prospectivos , Sistema de Registros , TransativadoresRESUMO
BACKGROUND: In acute myocardial infarction (MI), late Gadolinium enhancement (LGE) has been proposed to include the infarcted myocardium and area at risk. However, little information is available on the optimal timing after contrast injection to differentiate these 2 areas. Our aim was to determine in acute and chronic MI whether imaging time after contrast injection influences the LGE size that better predicts infarct size and functional recovery. METHODS: Subjects were evaluated by cardiovascular magnetic resonance (CMR) the first week (n = 60) and 3 months (n = 47) after a percutaneously revascularized STEMI. Inversion-recovery single-shot (ss-IR) imaging was acquired at multiple time points following contrast administration and compared to segmented inversion-recovery (seg-IR) sequences. Inversion time was properly adjusted and images were blinded, randomized and measured for LGE volumes. RESULTS: In acute MI, LGE volume decreased over several minutes (p = 0.005) with the greatest volume occurring at 3 minutes and the smallest at 25 minutes post-contrast injection; however, LGE volume remained constant over time in chronic MI (p = 0.886). Depending on the imaging time, in acute phase, a change in the transmurality index was also observed. A transmural infarction (>75%) at 25 minutes better predicted the absence of improvement in the wall motion score index (WMSI), a higher increase in left ventricular volumes and a lower ejection fraction compared to 10 minutes. CONCLUSIONS: A change was observed in LGE volume in the minutes following contrast administration in acute but not in chronic MI. Infarct transmurality 25 minutes post-contrast injection better predicted infarct size and functional recovery at follow-up.
Assuntos
Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Miocárdio/patologia , Volume Sistólico , Função Ventricular Esquerda , Idoso , Meios de Contraste/farmacocinética , Feminino , Gadolínio DTPA/farmacocinética , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Recuperação de Função Fisiológica , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Fatores de TempoRESUMO
AIMS: Non-invasive depiction of conducting channels (CCs) is gaining interest for its usefulness in ventricular tachycardia (VT) ablation. The best imaging approach has not been determined. We compared characterization of myocardial scar with late-gadolinium enhancement cardiac magnetic resonance using a navigator-gated 3D sequence (3D-GRE) and conventional 2D imaging using either a single shot inversion recovery steady-state-free-precession (2D-SSFP) or inversion-recovery gradient echo (2D-GRE) sequence. METHODS AND RESULTS: We included 30 consecutive patients with structural heart disease referred for VT ablation. Preprocedural myocardial characterization was conducted in a 3 T-scanner using 2D-GRE, 2D-SSFP and 3D-GRE sequences, yielding a spatial resolution of 1.4 × 1.4 × 5 mm, 2 × 2 × 5 mm, and 1.4 × 1.4 × 1.4 mm, respectively. The core and border zone (BZ) scar components were quantified using the 60% and 40% threshold of maximum pixel intensity, respectively. A 3D scar reconstruction was obtained for each sequence. An electrophysiologist identified potential CC and compared them with results obtained with the electroanatomic map (EAM). We found no significant differences in the scar core mass between the 2D-GRE, 2D-SSFP, and 3D-GRE sequences (mean 7.48 ± 6.68 vs. 8.26 ± 5.69 and 6.26 ± 4.37 g, respectively, P = 0.084). However, the BZ mass was smaller in the 2D-GRE and 2D-SSFP than in the 3D-GRE sequence (9.22 ± 5.97 and 9.39 ± 6.33 vs. 10.92 ± 5.98 g, respectively; P = 0.042). The matching between the CC observed in the EAM and in 3D-GRE was 79.2%; when comparing the EAM and the 2D-GRE and the 2D-SSFP sequence, the matching decreased to 61.8% and 37.7%, respectively. CONCLUSION: 3D scar reconstruction using images from 3D-GRE sequence improves the overall delineation of CC prior to VT ablation.
Assuntos
Cardiomiopatias/patologia , Cicatriz/patologia , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Taquicardia Ventricular/cirurgia , Idoso , Cardiomiopatias/complicações , Ablação por Cateter/métodos , Cicatriz/etiologia , Estudos de Coortes , Meios de Contraste , Feminino , Fibrose , Gadolínio DTPA , Humanos , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Cirurgia Assistida por Computador , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/patologiaRESUMO
Aims: Recently, novel post-processing tools have become available that measure intraventricular pressure gradients (IVPGs) on routinely obtained long-axis cine cardiac magnetic resonance (CMR) images. IVPGs provide a comprehensive overview of both systolic and diastolic left ventricular (LV) functions. Whether IVPGs are associated with clinical outcome after ST-elevation myocardial infarction (STEMI) is currently unknown. Here, we investigated the association between CMR-derived LV-IVPGs and major adverse cardiovascular events (MACE) in a large reperfused STEMI cohort with long-term outcome. Methods and results: In this prospectively enrolled multi-centre cohort study, 307 patients underwent CMR within 14 days after the first STEMI. LV-IVPGs (from apex-to-base) were estimated on the long-axis cine images. During a median follow-up of 9.7 (5.9-12.5) years, MACE (i.e. composite of cardiovascular death and de novo heart failure hospitalisation) occurred in 49 patients (16.0%). These patients had larger infarcts, more often microvascular injury, and impaired LV-IVPGs. In univariable Cox regression, overall LV-IVPG was significantly associated with MACE and remained significantly associated after adjustment for common clinical risk factors (hazard ratio (HR) 0.873, 95% confidence interval (CI) 0.794-0.961, P = 0.005) and myocardial injury parameters (HR 0.906, 95% CI 0.825-0.995, P = 0.038). However, adjusted for LV ejection fraction and LV global longitudinal strain (GLS), overall LV-IVPG does not provide additional prognostic information (HR 0.959, 95% CI 0.866-1.063, P = 0.426). Conclusion: Early after STEMI, CMR-derived LV-IVPGs are univariably associated with MACE and this association remains significant after adjustment for common clinical risk factors and measures of infarct severity. However, LV-IVPGs do not add prognostic value to LV ejection fraction and LV GLS.
RESUMO
BACKGROUND: Voltage mapping could identify the conducting channels potentially responsible for ventricular tachycardia (VT). Standard thresholds (0.5-1.5 mV) were established using bipolar catheters. No thresholds have been analyzed with high-density mapping catheters. In addition, channels identified by cardiac magnetic resonance (CMR) has been proven to be related with VT. OBJECTIVE: The purpose of this study was to analyze the diagnostic yield of a personalized voltage map using CMR to guide the adjustment of voltage thresholds. METHODS: All consecutive patients with scar-related VT undergoing ablation after CMR (from October 2018 to December 2020) were included. First, personalized CMR-guided voltage thresholds were defined systematically according to the distribution of the scar and channels. Second, to validate these new thresholds, a comparison with standard thresholds (0.5-1.5 mV) was performed. Tissue characteristics of areas identified as deceleration zones (DZs) were recorded for each pair of thresholds. In addition, the relation of VT circuits with voltage channels was analyzed for both maps. RESULTS: Thirty-two patients were included [mean age 66.6 ± 11.2 years; 25 (78.1%) ischemic cardiomyopathy]. Overall, 52 DZs were observed: 44.2% were identified as border zone tissue with standard cutoffs vs 75.0% using personalized voltage thresholds (P = .003). Of the 31 VT isthmuses detected, only 35.5% correlated with a voltage channel with standard thresholds vs 74.2% using adjusted thresholds (P = .005). Adjusted cutoff bipolar voltages that better matched CMR images were 0.51 ± 0.32 and 1.79 ± 0.71 mV with high interindividual variability (from 0.14-1.68 to 0.7-3.21 mV). CONCLUSION: Personalized voltage CMR-guided personalized voltage maps enable a better identification of the substrate with a higher correlation with both DZs and VT isthmuses than do conventional voltage maps using fixed thresholds.