Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immun Ageing ; 20(1): 41, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573338

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS: Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS: We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.

2.
Neurocrit Care ; 38(3): 781-790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922475

RESUMO

BACKGROUND: Monitoring intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is crucial in the management of the patient with severe traumatic brain injury (TBI). In several institutions ICP and CPP are summarized hourly and entered manually on bedside charts; these data have been used in large observational and interventional trials. However, ICP and CPP may change rapidly and frequently, so data recorded in medical charts might underestimate actual ICP and CPP shifts. The aim of this study was to evaluate the accuracy of manual data annotation for proper capturing of ICP and CPP. For this aim, we (1) compared end-hour ICP and CPP values manually recorded (MR) with values recorded continuously by computerized high-resolution (HR) systems and (2) analyzed whether MR ICP and MR CPP are reliable indicators of the burden of intracranial hypertension and low CPP. METHODS: One hundred patients were included. First, we compared the MR data with the values stored in the computerized system during the first 7 days after admission. For this point-to-point analysis, we calculated the difference between end-hour MR and HR ICP and CPP. Then we analyzed the burden of high ICP (> 20 mm Hg) and low CPP (< 60 mm Hg) measured by the computerized system, in which continuous data were stored, compared with the pressure-time dose based on end-hour measurements. RESULTS: The mean difference between MR and HR end-hour values was 0.02 mm Hg for ICP (SD 3.86 mm Hg) and 1.54 mm Hg for CPP (SD 8.81 mm Hg). ICP > 20 mm Hg and CPP < 60 mm Hg were not detected by MR in 1.6% and 5.8% of synchronized measurements, respectively. Analysis of the pathological ICP and CPP throughout the recording, however, indicated that calculations based on manual recording seriously underestimated the ICP and CPP burden (in 42% and 28% of patients, respectively). CONCLUSIONS: Manual entries fairly represent end-hour HR ICP and CPP. However, compared with a computerized system, they may prove inadequate, with a serious risk of underestimation of the ICP and CPP burden.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipertensão Intracraniana , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Circulação Cerebrovascular , Hospitalização , Hipertensão Intracraniana/diagnóstico , Pressão Intracraniana
3.
Neurocrit Care ; 35(3): 651-661, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331210

RESUMO

BACKGROUND: After traumatic brain injury (TBI), fever is frequent. Brain temperature (BT), which is directly linked to body temperature, may influence brain physiology. Increased body and/or BT may cause secondary brain damage, with deleterious effects on intracranial pressure (ICP), cerebral perfusion pressure (CPP), and outcome. METHODS: Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a prospective multicenter longitudinal study on TBI in Europe and Israel, includes a high resolution cohort of patients with data sampled at a high frequency (from 100 to 500 Hz). In this study, simultaneous BT, ICP, and CPP recordings were investigated. A mixed-effects linear model was used to examine the association between different BT levels and ICP. We additionally focused on changes in ICP and CPP during the episodes of BT changes (Δ BT ≥ 0.5 °C lasting from 15 min to 3 h) up or downward. The significance of ICP and CPP variations was estimated with the paired samples Wilcoxon test (also known as Wilcoxon signed-rank test). RESULTS: Twenty-one patients with 2,435 h of simultaneous BT and ICP monitoring were studied. All patients reached a BT of 38 °C and experienced at least one episode of ICP above 20 mm Hg. The linear mixed-effects model revealed an association between BT above 37.5 °C and higher ICP levels that was not confirmed for lower BT. We identified 149 episodes of BT changes. During BT elevations (n = 79) ICP increased, whereas CPP was reduced; opposite ICP and CPP variations occurred during episodes of BT reduction (n = 70). All these changes were of moderate clinical relevance (increase of ICP of 4.5 and CPP decrease of 7.5 mm Hg for BT rise, and ICP reduction of 1.7 and CPP elevation of 3.7 mm Hg during BT defervescence), even if statistically significant (p < 0.0001). It has to be noted, however, that a number of therapeutic interventions against intracranial hypertension was documented during those episodes. CONCLUSIONS: Patients after TBI usually develop BT > 38 °C soon after the injury. BT may influence brain physiology, as reflected by ICP and CPP. An association between BT exceeding 37.5 °C and a higher ICP was identified but not confirmed for lower BT ranges. The relationship between BT, ICP, and CPP become clearer during rapid temperature changes. During episodes of temperature elevation, BT seems to have a significant impact on ICP and CPP.


Assuntos
Lesões Encefálicas Traumáticas , Hipertensão Intracraniana , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Circulação Cerebrovascular/fisiologia , Humanos , Hipertensão Intracraniana/etiologia , Pressão Intracraniana/fisiologia , Estudos Longitudinais , Estudos Prospectivos , Temperatura
4.
Neurocrit Care ; 33(2): 491-498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32314244

RESUMO

BACKGROUND: Intracranial pressure (ICP) monitoring is essential after subarachnoid hemorrhage (SAH) to prevent secondary brain insults and to tailor individualized treatments. Optic nerve sheath diameter (ONSD), measured using ultrasound (US), could serve as a noninvasive bedside tool to estimate ICP, avoiding the risks of hemorrhage or infection related to intracranial catheters. The aims of this study were twofold: first, to explore the reliability of US for measuring ONSD; second, to establish whether the US-ONSD can be considered a proxy for ICP in SAH patients early after bleeding. For the first aim, we compared the ONSD measurements given by magnetic resonance imaging (MRI-ONSD) with the US-ONSD findings. For the second aim, we analyzed the relationship between US-ONSD measurements and ICP values. METHODS: Adult patients with diagnosis of aneurysmal SAH and external ventricular drainage system (EVD) were included. Ten patients were examined by MRI to assess ONSD, and the results were compared to the diameter given by US. In 20 patients, the US-ONSD values were related to ICP measured simultaneously through EVD. In ten of these patients, we explored the changes in the US-ONSD at the time of controlled and fairly rapid changes in ICP after cerebrospinal fluid (CSF) drainage. RESULTS: US-ONSD measurements at the bedside were accurate, very similar to the diameters measured by MRI (the mean difference in the Bland-Altman plot was 0.08 mm, 95% limits of agreement: - 1.13; + 1.23 mm). No clear relationship was detectable between the ICP and US-ONSD, and a linear regression model showed an angular coefficient very close to 0 (p > 0.05). US-ONSD and ICP values were in agreement after CSF drainage and shifts in ICP in a limited number of patients. CONCLUSIONS: US-ONSD measurement does not accurately estimate ICP in SAH patients in the intensive care unit.


Assuntos
Hipertensão Intracraniana , Hemorragia Subaracnóidea , Adulto , Humanos , Hipertensão Intracraniana/diagnóstico por imagem , Hipertensão Intracraniana/etiologia , Pressão Intracraniana , Nervo Óptico/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes , Hemorragia Subaracnóidea/diagnóstico por imagem , Ultrassonografia
6.
Acta Neurochir (Wien) ; 159(10): 1981-1989, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28791520

RESUMO

BACKGROUND: An external ventricular drain (EVD) is used to measure intracranial pressure (ICP) and to drain cerebrospinal fluid (CSF). The procedure is generally safe, but parenchymal sequelae are reported as a possible side effect, with variable incidence. We investigated the mechanical sequelae of EVD insertion and their clinical significance in acute brain-injured patients, with a special focus on hemorrhagic lesions. METHODS: Mechanical sequelae of EVD insertion were detected in patients by computed tomography (CT) and magnetic resonance imaging (MRI), performed for clinical purposes. RESULTS: In 155 patients we studied the brain tissue surrounding the EVD by CT scan (all patients) and MRI (16 patients); 53 patients were studied at three time points (day 1-2, day 3-10, >10 days after EVD placement) to document the lesion time course. Small hemorrhages, with a hyperdense core surrounded by a hypodense area, were identified by CT scan in 33 patients. The initial average (hyper- + hypodense) lesion volume was 8.16 ml, increasing up to 15 ml by >10 days after EVD insertion. These lesions were not accompanied by neurologic deterioration or ICP elevation. History of arterial hypertension, coagulation abnormalities and multiple EVD insertions were significantly associated with hemorrhages. In 122 non-hemorrhagic patients, we detected very small hypodense areas (average volume 0.38 ml) surrounding the catheter. At later times these hypodensities slightly increased. MRI studies in 16 patients identified both intra- and extracellular edema around the catheters. The extracellular component increased with time. CONCLUSION: EVD insertion, even when there are no clinically important complications, causes a tissue reaction with minimal bleedings and small areas of brain edema.


Assuntos
Edema Encefálico/etiologia , Lesões Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Drenagem/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Edema Encefálico/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Pressão Intracraniana/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Crit Care Med ; 42(8): 1910-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810526

RESUMO

OBJECTIVE: Mannose-binding lectin protein is the activator of the lectin complement pathway. Goals were (1) to investigate mannose-binding lectin expression after human and experimental traumatic brain injury induced by controlled cortical impact and (2) to evaluate whether mannose-binding lectin deletion is associated with reduced sequelae after controlled cortical impact. DESIGN: Translational research, combining a human/experimental observational study and a prospective experimental study. SETTING: University hospital/research laboratory. PATIENTS AND SUBJECTS: Brain-injured patients, C57Bl/6 mice, and mannose-binding lectin-A and mannose-binding lectin-C double-knockout (-/-) mice. INTERVENTIONS: Using anti-human mannose-binding lectin antibody, we evaluated mannose-binding lectin expression in tissue samples from six patients who underwent surgery for a cerebral contusion. Immunohistochemistry was also performed on tissues obtained from mice at 30 minutes; 6, 12, 24, 48, and 96 hours; and 1 week after controlled cortical impact using anti-mouse mannose-binding lectin-A and mannose-binding lectin-C antibodies. We evaluated the effects of mannose-binding lectin deletion in wild-type and mannose-binding lectin-A and mannose-binding lectin-C double-knockout mice. Functional outcome was evaluated using the neuroscore and beam walk tests for 4 weeks postinjury (n = 11). Histological injury was evaluated by comparing neuronal cell counts in the cortex adjacent to the contusion (n = 11). MEASUREMENTS AND MAIN RESULTS: Following human traumatic brain injury, we observed mannose-binding lectin-positive immunostaining in the injured cortex as early as few hours and up to 5 days postinjury. Similarly in mice, we observed mannose-binding lectin-C-positive immunoreactivity in the injured cortex beginning 30 minutes and persisting up to 1 week postinjury. The extent of mannose-binding lectin-A expression was lower when compared with that of mannose-binding lectin-C. We observed attenuated sensorimotor deficits in mannose-binding lectin (-/-) mice compared with wild-type mice at 2-4 weeks postinjury. Furthermore, we observed reduced cortical cell loss at 5 weeks postinjury in mannose-binding lectin (-/-) mice compared with wild-type mice. CONCLUSIONS: Mannose-binding lectin expression was documented after traumatic brain injury. The reduced sequelae associated with mannose-binding lectin absence suggest that mannose-binding lectin modulation might be a potential target after traumatic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Lectinas de Ligação a Manose/metabolismo , Adulto , Idoso , Animais , Lectina de Ligação a Manose da Via do Complemento/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
8.
Glia ; 61(6): 827-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23440897

RESUMO

The studies on fractalkine and its unique receptor CX3CR1 in neurological disorders yielded contrasting results. We have explored the consequences of CX3CR1 deletion in ischemic (30' MCAo) mice on: (1) brain infarct size; (2) microglia dynamism and morphology; (3) expression of markers of microglia/macrophages (M/M) activation and polarization. We observed smaller infarcts in cx3cr1(-/-) (26.42 ± 7.41 mm(3) , mean ± sd) compared to wild type (36.29 ± 11.57) and cx3cr1(-/+) (34.49 ± 8.91) mice. We longitudinally analyzed microglia by in vivo two-photon microscopy before, 1 and 24 h after transient ischemia. Microglia were stationary in both cx3cr1(-/-) and cx3cr1(-/+) mice throughout the study. In cx3cr1(-/-) mice, they displayed a significantly higher number of ramifications >10 µm at baseline and at 24 h after ischemia compared to cx3cr1(-/+) mice, indicating that CX3CR1 deficiency impaired the development of microglia hypertrophic/amoeboid morphology. At 24 h after ischemia, we performed post mortem quantitative immunohistochemistry for different M/M markers. In cx3cr1(-/-) immunoreactivity for CD11b (M/M activation) and for CD68 (associated with phagocytosis) were decreased, while that for CD45(high) (macrophage and leukocyte recruitment) was increased. In addition, immunoreactivity for Ym1 (M2 polarization) was enhanced, while that for iNOS (M1) was decreased. Our data show that in cx3cr1(-/-) mice protection from ischemia at early time points after injury is associated with a protective inflammatory milieu, characterized by the promotion of M2 polarization markers.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Inflamação/patologia , Lectinas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Receptores de Quimiocinas/genética , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Front Immunol ; 13: 866558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711453

RESUMO

Intracranial aneurysms (IAs) are very rare in children, and the characteristics of the T-cells in the IA wall are largely unknown. A comatose 7-years-old child was admitted to our center because of a subarachnoid hemorrhage due to a ruptured giant aneurysm of the right middle cerebral artery. Two days after the aneurysm clipping the patient was fully awake with left hemiparesis. T-cells from the IA wall and from peripheral blood of this patient were analyzed by multi-dimensional flow cytometry. Unbiased analysis, based on the use of FlowSOM clustering and dimensionality reduction technique UMAP, indicated that there was virtually no overlap between circulating and tissue-infiltrating T-cells. Thus, naïve T-cells and canonical memory T-cells were largely restricted to peripheral blood, while CD4-CD8-T-cells were strongly enriched in the IA wall. The unique CD4+, CD8+ and CD4-CD8-T-cell clusters from the IA wall expressed high levels of CCR5, Granzyme B and CD69, displaying thus characteristics of cytotoxic and tissue-resident effector cells. Low Ki67 expression indicated that they were nevertheless in a resting state. Among regulatory T-cell subsets, Eomes+Tr1-like cells were strongly enriched in the IA wall. Finally, analysis of cytokine producing capacities unveiled that the IA wall contained poly-functional T-cells, which expressed predominantly IFN-γ, TNF and IL-2. CD4+T-cells co-expressed also CD40L, and produced some IL-17, GM-CSF and IL-10. This report provides to our knowledge the first detailed characterization of the human T-cell compartment in the IA wall.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Linfócitos T CD8-Positivos/metabolismo , Criança , Humanos , Aneurisma Intracraniano/etiologia , Hemorragia Subaracnóidea/metabolismo , Subpopulações de Linfócitos T
10.
Stroke ; 42(5): 1429-36, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441145

RESUMO

BACKGROUND AND PURPOSE: To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion. METHODS: Adult male hCD2-GFP transgenic mice that exhibit green fluorescent protein-labeled T cells underwent permanent left distal middle cerebral artery occlusion by electrocoagulation (n=6) or sham surgery (n=6) and then multiphoton laser imaging 72 hours later. RESULTS: Extravasated T cell number significantly increased after middle cerebral artery occlusion versus sham. Two T cell populations existed after middle cerebral artery occlusion, possibly driven by 2 T cell subpopulations; 1 had significantly lower and the other significantly higher track velocity and displacement rate than sham. CONCLUSIONS: The different motilities and behaviors of T cells observed using our imaging approach after stroke could reveal important mechanisms of immune surveillance for future therapeutic exploitations.


Assuntos
Encéfalo/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Acidente Vascular Cerebral/patologia , Linfócitos T/patologia , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Infarto da Artéria Cerebral Média/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Acidente Vascular Cerebral/etiologia
11.
Ther Hypothermia Temp Manag ; 11(2): 122-131, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33202157

RESUMO

Fever may aggravate secondary brain injury after traumatic brain injury (TBI). The aim of this study was to identify episodes of temperature increases through visual plot analysis and algorithm supported detection, and to describe associated patterns of changes in on brain tissue oxygen tension (PbtO2). Data derive from the high-resolution cohort of the multicenter prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Temperature increases (≥0.5°C) were visually identified in 33 patients within the first 11 days of monitoring. Generalized estimating equations were used to detect significant changes of systemic and neuromonitoring parameters from baseline to the highest temperature. Patients were median 50 (interquartile range [IQR], 35-62) years old, and presented with a Glasgow Coma Scale (GCS) of 8 (IQR, 4-10). In 202 episodes of temperature increases, mean temperature rose by 1.0°C ± 0.5°C within 4 hours. Overall, PbtO2 slightly increased (ΔPbtO2 = 0.9 ± 6.1 mmHg, p = 0.022) during temperature increases. PbtO2 increased in 35% (p < 0.001), was stable in 49% (p = 0.852), and decreased in 16% (p < 0.001) of episodes. During episodes of temperature increases and simultaneous drops in PbtO2, cerebral perfusion pressure (CPP) decreased (ΔCPP -6.3 ± 11.5 mmHg; p < 0.001). Brain tissue hypoxia (PbtO2 <20 mmHg) developed during 27/164 (17%) episodes of effervescences, in the remaining 38/202 episodes baseline PbtO2 was already <20 mmHg. Comparable results were found when using algorithm-supported detection of temperature increases. In conclusion, during effervescences, PbtO2 was mostly stable or slightly increased. A decrease of PbtO2 was observed in every sixth episode, where it was associated with a decrease in CPP. Our data highlight the need for special attention to CPP monitoring and maintenance during episodes of fever.


Assuntos
Lesões Encefálicas Traumáticas , Hipotermia Induzida , Adulto , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Humanos , Pressão Intracraniana , Pessoa de Meia-Idade , Oxigênio , Estudos Prospectivos , Temperatura
12.
J Neuropathol Exp Neurol ; 68(9): 964-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19680147

RESUMO

The c-Jun N-terminal kinase (JNK) pathway is involved in cell stress and apoptosis. We tested the hypothesis that this pathway plays a role in traumatic brain injury (TBI) by assessing JNK activation in human brain tissues and in brains of mice subjected to controlled cortical impact brain injury. We also assessed the effects of specific inhibition of the JNK pathway by the cell-permeable JNK inhibitor peptide, D-JNKI1, on neurobehavioral function and posttraumatic cell loss in mice. The inhibitor was administered intraperitoneally 10 minutes after injury. The JNK pathway showed robust activation both in human contusion specimens and in injured cortex and hippocampi of TBI-injured mice, 1, 4, and 48 hours after injury. D-JNKI1 treatment significantly improved motor performance at 48 hours and 7 days after injury and reduced the contusion volume compared with saline treatment; the numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly decreased in the hippocampi of injured mice 48 hours after treatment. Thus, because the JNK pathway is activated after human and experimental TBI and the inhibitor peptide D-JNKI1 affords significant neuroprotection and amelioration of neurobehavioral deficits after experimental TBI, therapeutic targeting of the JNK activation pathway may hold promise for future clinical applications.


Assuntos
Lesões Encefálicas/enzimologia , Ativação Enzimática/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Adulto , Idoso , Animais , Western Blotting , Lesões Encefálicas/patologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Tomografia Computadorizada por Raios X
13.
Crit Care Med ; 37(2): 659-65, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19114897

RESUMO

OBJECTIVE: The aim of the study was to evaluate the effects of C1-inhibitor (C1-INH), an endogenous inhibitor of complement and kinin systems, on neurobehavioral and histological outcome following controlled cortical impact brain injury. DESIGN: Experimental prospective randomized study in mice. SETTING: Experimental laboratory. SUBJECTS: Male C57Bl/6 mice (n = 81). INTERVENTIONS: Mice were subjected to controlled cortical impact brain injury followed by an intravenous bolus of either C1-INH (15 U either at 10 minutes or 1 hour postinjury) or saline (equal volume, 150 microl at 10 minutes postinjury). Sham-operated mice received identical surgery and saline injection without brain injury. Neurological motor function was evaluated weekly for 4 weeks using the Composite Neuroscore. Cognitive function was evaluated at 4 weeks postinjury using the Morris Water Maze. Histological outcome was performed by measuring the contusion volume at 1 week and 4 weeks postinjury. MEASUREMENTS AND MAIN RESULTS: Brain-injured mice receiving C1-INH at 10 minutes postinjury showed attenuated motor deficits, cognitive dysfunction and reduced contusion volume compared to brain-injured mice receiving saline. Mice receiving C1-INH at 1 hour postinjury showed reduced motor deficits compared to brain-injured mice receiving saline, but no significantly different cognitive and histological outcome. Immunohistochemical analysis showed that 20 minutes after infusion, C1-INH was localised on endothelial cells and in brain tissue surrounding brain capillaries of the injured hemisphere. CONCLUSION: Our results show that post-traumatic administration of C1-INH attenuates neuro-behavioral deficits and histological damage associated with traumatic brain injury.


Assuntos
Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Proteína Inibidora do Complemento C1/uso terapêutico , Animais , Lesões Encefálicas/psicologia , Proteína Inibidora do Complemento C1/farmacologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos
14.
J Cereb Blood Flow Metab ; 39(5): 794-807, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29425056

RESUMO

We explored the involvement of the lectin pathway of complement in post-traumatic brain injury (TBI) pathophysiology in humans. Brain samples were obtained from 28 patients who had undergone therapeutic contusion removal, within 12 h (early) or from >12 h until five days (late) from injury, and from five non-TBI patients. Imaging analysis indicated that lectin pathway initiator molecules (MBL, ficolin-1, ficolin-2 and ficolin-3), the key enzymes MASP-2 and MASP-3, and the downstream complement components (C3 fragments and TCC) were present inside and outside brain vessels in all contusions. Only ficolin-1 was found in the parenchyma of non-TBI tissues. Immunoassays in brain homogenates showed that MBL, ficolin-2 and ficolin-3 increased in TBI compared to non-TBI (2.0, 2.2 and 6.0-times) samples. MASP-2 increased with subarachnoid hemorrhage and abnormal pupil reactivity, two indicators of structural and functional damage. C3 fragments and TCC increased, respectively, by 3.5 - and 4.0-fold in TBI compared to non-TBI tissue and significantly correlated with MBL, ficolin-2, ficolin-3, MASP-2 and MASP-3 levels in the homogenates. In conclusion, we show for the first time the direct presence of lectin pathway components in human cerebral contusions and their association with injury severity, suggesting a central role for the lectin pathway in the post-traumatic pathophysiology of human TBI.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lectina de Ligação a Manose da Via do Complemento , Lesões Encefálicas Traumáticas/patologia , Ativação do Complemento , Complemento C3/análise , Complemento C3/imunologia , Feminino , Humanos , Lectinas/análise , Lectinas/imunologia , Masculino , Lectina de Ligação a Manose/análise , Lectina de Ligação a Manose/imunologia , Pessoa de Meia-Idade , Ficolinas
15.
Front Neurol ; 9: 885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405517

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. In the last 30 years several neuroprotective agents, attenuating the downstream molecular and cellular damaging events triggered by TBI, have been extensively studied. Even though many drugs have shown promising results in the pre-clinical stage, all have failed in large clinical trials. Mesenchymal stromal cells (MSCs) may offer a promising new therapeutic intervention, with preclinical data showing protection of the injured brain. We selected three of the critical aspects identified as possible causes of clinical failure: the window of opportunity for drug administration, the double-edged contribution of mechanisms to damage and recovery, and the oft-neglected role of reparative mechanisms. For each aspect, we briefly summarized the limitations of previous trials and the potential advantages of a newer approach using MSCs.

16.
J Neurotrauma ; 24(8): 1339-46, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17711395

RESUMO

High intracranial pressure (HICP) may be a very early event after traumatic brain injury (TBI), but in most cases, especially when contusions and edema develop over time, HICP will worsen over succeeding days. This study describes the incidence and severity of elevated intracranial pressure (ICP) after TBI and attempts to document its time course. In this prospective study, 201 TBI patients in whom ICP was monitored for more than 12 h were evaluated. ICP was measured, digitalized, and analyzed after manual filtering. The number of episodes of HICP and the mean ICP value for every 12-h interval were calculated. When monitoring was concluded, the highest mean ICP collected in every patient was identified. A total of 21,000 h of ICP monitoring were recorded. Active treatment to prevent or reduce HICP was used in 200 patients. HICP was documented in 155 cases. Half of the patients had their highest mean ICP during the first 3 days after injury, but many showed delayed ICP elevation, with 25% showing highest mean ICP after day 5. In these cases, HICP was significantly worse and required more intense therapies.


Assuntos
Lesões Encefálicas/fisiopatologia , Hipertensão Intracraniana/epidemiologia , Adulto , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia , Feminino , Seguimentos , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Incidência , Hipertensão Intracraniana/diagnóstico por imagem , Hipertensão Intracraniana/terapia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Radiografia , Fatores de Tempo , Resultado do Tratamento
17.
Crit Care ; 11(1): R7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17233895

RESUMO

INTRODUCTION: The presence of intracranial hypertension (HICP) after traumatic brain injury (TBI) affects patient outcome. Intracranial pressure (ICP) data from electronic monitoring equipment are usually calculated and recorded hourly in the clinical chart by trained nurses. Little is known, however, about how precisely this method reflects the real patterns of ICP after severe TBI. In this study, we compared hourly manual recording with a validated and continuous computerized reference standard. METHODS: Thirty randomly selected patients with severe TBI and HICP admitted to the neuroscience intensive care unit (Policlinico University Hospital, Milan, Italy) were retrospectively studied. A 24-hour interval with ICP monitoring was randomly selected for each patient. The manually recorded data available for analysis covered 672 hours corresponding to 36,492 digital data points. The two methods were evaluated using the correlation coefficient and the Bland and Altman method. We used the proportion test to analyze differences in the number of episodes of HICP (ICP > 20 mm Hg) detected with the two methods and the paired t test to analyze differences in the percentage of time of HICP. RESULTS: There was good agreement between the digitally collected ICP and the manual recordings of the end-hour values. Bland and Altman analysis confirmed a mean difference between the two methods of 0.05 mm Hg (standard deviation 3.66); 96% of data were within the limits of agreement (+7.37 and -7.28). The average percentages of time of ICP greater than 20 mm Hg were 39% calculated from the digital measurements and 34% from the manual observations. From the continuous digital recording, we identified 351 episodes of ICP greater than 20 mm Hg lasting at least five minutes and 287 similar episodes lasting at least ten minutes. Conversely, end-hour ICP of greater than 20 mm Hg was observed in only 204 cases using manual recording methods. CONCLUSION: Although manually recorded end-hour ICP accurately reflected the computerized end-hour and mean hour values, the important omission of a number of episodes of high ICP, some of long duration, results in a clinical picture that is not accurate or informative of the true pattern of unstable ICP in patients with TBI.


Assuntos
Lesões Encefálicas/fisiopatologia , Hipertensão Intracraniana/diagnóstico , Pressão Intracraniana , Sistemas Computadorizados de Registros Médicos , Monitorização Fisiológica/métodos , Adolescente , Adulto , Lesões Encefálicas/complicações , Computadores , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Hipertensão Intracraniana/etiologia , Masculino , Pessoa de Meia-Idade , Registros de Enfermagem , Estudos Retrospectivos
18.
Front Neurol ; 8: 354, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790967

RESUMO

Neuroprotection after traumatic brain injury (TBI) is an important goal pursued strenuously in the last 30 years. The acute cerebral injury triggers a cascade of biochemical events that may worsen the integrity, function, and connectivity of the brain cells and decrease the chance of functional recovery. A number of molecules acting against this deleterious cascade have been tested in the experimental setting, often with preliminary encouraging results. Unfortunately, clinical trials using those candidate neuroprotectants molecules have consistently produced disappointing results, highlighting the necessity of improving the research standards. Despite repeated failures in pharmacological neuroprotection, TBI treatment in neurointensive care units has achieved outcome improvement. It is likely that intensive treatment has contributed to this progress offering a different kind of neuroprotection, based on a careful prevention and limitations of intracranial and systemic threats. The natural course of acute brain damage, in fact, is often complicated by additional adverse events, like the development of intracranial hypertension, brain hypoxia, or hypoperfusion. All these events may lead to additional brain damage and worsen outcome. An approach designed for early identification and prompt correction of insults may, therefore, limit brain damage and improve results.

19.
J Neurotrauma ; 33(11): 1060-72, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26180940

RESUMO

An impaired ability to regulate microglia activation by fractalkine (CX3CL1) leads to microglia chronic sub-activation. How this condition affects outcome after acute brain injury is still debated, with studies showing contrasting results depending on the timing and the brain pathology. Here, we investigated the early and delayed consequences of fractalkine receptor (CX3CR1) deletion on neurological outcome and on the phenotypical features of the myeloid cells present in the lesions of mice with traumatic brain injury (TBI). Wild type (WT) and CX3CR1(-/-) C57Bl/6 mice were subjected to sham or controlled cortical impact brain injury. Outcome was assessed at 4 days and 5 weeks after TBI by neuroscore, neuronal count, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Compared with WT mice, CX3CR1(-/-) TBI mice showed a significant reduction of sensorimotor deficits and lower cellular damage in the injured cortex 4 days post-TBI. Conversely, at 5 weeks, they showed a worsening of sensorimotor deficits and pericontusional cell death. Microglia (M) and macrophage (µ) activation and polarization were assessed by quantitative immunohistochemistry for CD11b, CD68, Ym1, and inducible nitric oxide synthase (iNOS)-markers of M/µ activation, phagocytosis, M2, and M1 phenotypes, respectively. Morphological analysis revealed a decreased area and perimeter of CD11b(+) cells in CX3CR1(-/-) mice at 4 days post-TBI, whereas, at 5 weeks, both parameters were significantly higher, compared with WT mice. At 4 days, CX3CR1(-/-) mice showed significantly decreased CD68 and iNOS immunoreactivity, while at 5 weeks post-injury, they showed a selective increase of iNOS. Gene expression on CD11b(+) sorted cells revealed an increase of interleukin 10 and insulin-like growth factor 1 (IGF1) at 1 day and a decrease of IGF1 4 days and 5 weeks post-TBI in CX3CR1(-/-), compared with WT mice. These data show an early protection followed by a chronic exacerbation of TBI outcome in the absence of CX3CR1. Thus, longitudinal effects of myeloid cell manipulation at different stages of pathology should be investigated to understand how and when their modulation may offer therapeutic chances.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Receptor 1 de Quimiocina CX3C/fisiologia , Progressão da Doença , Ativação de Macrófagos , Microglia/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Proteção , Fatores de Tempo
20.
Prog Neurobiol ; 121: 36-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25014527

RESUMO

The cerebral vasculature has a unique role in providing a constant supply of oxygen and nutrients to ensure normal brain functions. Blood vessels that feed the brain are far from being simply channels for passive transportation of fluids. They form complex structures made up of different cell types. These structures regulate blood supply, local concentrations of O2 and CO2, transport of small molecules, trafficking of plasma cells and fine cerebral functions in normal and diseased brains. Until few years ago, analysis of these functions has been typically based on post mortem techniques, whose interpretation is limited by the need for tissue processing at specific times. For a reliable and effective picture of the dynamic processes in the central nervous system, real-time information in vivo is required. There are now few in vivo systems, among which two-photon microscopy (2-PM) is a truly innovative tool for studying the brain. 2-PM has been used to dissect specific aspects of vascular and immune cell dynamics in the context of neurological diseases, providing exciting results that could not have been obtained with conventional methods. This review summarizes the latest findings on vascular and immune system action in the brain, with particular focus on the dynamic responses after ischemic brain injury. 2-PM has helped define the hierarchical architecture of the brain vasculature, the dynamic interaction between the vasculature and immune cells recruited to lesion sites, the effects of blood flow on neuronal and microglial activity and the ability of cells of the neurovascular unit to regulate blood flow.


Assuntos
Vasos Sanguíneos/fisiologia , Encéfalo , Sistema Imunitário/fisiologia , Microscopia/métodos , Fótons , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa