Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 22(1): 847, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371168

RESUMO

Nanobiosensor platforms have emerged as convenient and promising approaches with remarkable efficacy for the diagnosis of infectious diseases. Gold nanoparticles (AuNPs) have been widely used due to numerous advantageous properties such as optical, electrical, physicochemical and great biomolecules binding capabilities. This study aimed to apply AuNP-Probe Conjugate for the detection of Leishmania spp., using colorimetric and amplification methods targeting parasitic ITS2 fragment. The first method was carried out by hybridization of 10µL of DNA with 4 µL of probe and addition of 5 µL of 0.2 N HCl (non-amplification method). Second method was followed by polymerase chain reaction (PCR) amplification using thiolated primer, 5 µL of AuNP and 5 µL of 0.2 N HCl. The appearance of red and purple colors indicated positive and negative results, respectively. The minimum of detection for non-amplification and amplification methods for three strains of Leishmania namely L. major, L. tropica and L. infantum were determined to be 32 fg/µL and 16 fg/µL, respectively. Sensitivity for detection of visceral leishmaniasis (VL) for non-amplification and amplification methods included 96% and 100%, respectively and for cutaneous leishmaniasis (CL) included 98% and 100%, respectively. The results of this investigation revealed that sensitivity of amplification method was the same as RT-qPCR, while that of non-amplification method was lower. However, this method was promising because of no need for any equipment, high specificity, enough sensitivity, low cost and rapidity (less than 30 min) to complete after genomic DNA extraction.


Assuntos
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniose Cutânea , Leishmaniose Visceral , Nanopartículas Metálicas , Humanos , Ouro , Leishmania tropica/genética , Leishmaniose Visceral/diagnóstico , Leishmaniose Cutânea/diagnóstico , Leishmania major/genética , Reação em Cadeia da Polimerase em Tempo Real , Leishmania infantum/genética
2.
Int J Biomater ; 2024: 5556838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725434

RESUMO

Cancer and bacterial infections are major global health concerns driving the need for innovative medicines. This study investigated alginate nanoparticles loaded with essential oils (EOs) from Cuminum cyminum and Zataria multiflora as potential drug delivery systems. The nanoparticles were comprehensively characterized using techniques such as gas chromatography-mass spectrometry (GC-MS), dynamic light scattering (DLS), zetasizer, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Their biological properties against two human skin cancer cell lines (A-375 and A-431) and three bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) were also evaluated. Alginate nanoparticles containing C. cyminum and Z. multiflora EOs exhibited sizes of 160 ± 8 nm and 151 ± 10 nm, respectively. Their zeta potentials and encapsulation efficiencies were -18 ± 1 mV and 79 ± 4%, as well as -27 ± 2 mV and 86 ± 5%, respectively. The IC50 values against the tested cell lines and bacteria revealed superior efficacy for nanoparticles containing Z. multiflora EO. Considering the proper efficacy of the proposed nanoparticles, the straightforward preparation method and low cost suggest their potential for further in vivo studies.

3.
BMC Complement Med Ther ; 24(1): 138, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566054

RESUMO

Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.


Assuntos
Cânfora , Polietilenoglicóis , Polietilenoimina , Timol , Timol/farmacologia , Nanogéis , Cânfora/farmacologia , Antibacterianos/farmacologia , Escherichia coli
4.
BMC Complement Med Ther ; 24(1): 56, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273247

RESUMO

AIMS: Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS: The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS: The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION: The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.


Assuntos
Quitosana , Óleos Voláteis , Poliésteres , Ratos , Animais , Quitosana/farmacologia , Óleos Voláteis/farmacologia , Derivados da Hipromelose/farmacologia , Cicatrização
5.
BMC Complement Med Ther ; 23(1): 6, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624422

RESUMO

BACKGROUND: Topical drug delivery using nanoemulsions and nanogels is a promising approach to treating skin disorders such as melanoma. METHODS: In this study, the chemical composition of Mentha pulegium essential oil with five major compounds, including pulegone (68.11%), l-menthone (8.83%), limonene (2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) was first identified using GC-MS (Gas chromatography-Mass Spectrometry) analysis. Afterward, a nano-scaled emulsion containing the essential oil with a droplet size of 7.70 ± 1 nm was prepared. Nanogel containing the essential oil was then prepared by adding (2% w/v) carboxymethyl cellulose to the nano-scaled emulsion. Moreover, the successful loading of M. pulegium essential oil in the nano-scaled emulsion and nanogel was confirmed using ATR-FTIR (Attenuated total reflectance-Fourier Transform InfraRed) analysis. Then, human A375 melanoma cells were treated with different concentrations of samples, the MTT assay evaluated cell viability, and cell apoptosis was confirmed by flow cytometry. In addition, the expression of apoptotic and anti-apoptotic genes, including Bax and Bcl-2, was evaluated using the qPCR (quantitative Polymerase Chain Reaction) technique. RESULTS: The results showed that cell viability was reduced by 90 and 45% after treatment with 300 µg/mL of the nanogel and nano-scaled emulsion. As confirmed by flow cytometry, this effect was mediated by apoptosis. Furthermore, gene expression analysis showed up-regulation of Bax and down-regulation of Bcl-2 genes. Therefore, the prepared nanogel, with high efficacy, could be considered a potent anticancer agent for supplementary medicine and in vivo research.


Assuntos
Melanoma , Mentha pulegium , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha pulegium/química , Nanogéis , Emulsões , Proteína X Associada a bcl-2 , Genes Reguladores , Melanoma/tratamento farmacológico , Apoptose
6.
Food Sci Nutr ; 11(6): 2823-2837, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324854

RESUMO

Retardation of quality loss of seafood has been a new concept in recent years. This study's main objective was to evaluate the microbial, chemical, and sensory attributes of shrimp coated with alginate sodium nanoparticles containing Zataria multiflora and Cuminum cyminum essential oils (EOs) during refrigerated storage. At the end of storage time (15 days storage at 4°C), the pH, thiobarbituric acid reactive substances (TBARS), and total volatile basic nitrogen (TVBN) amounts in shrimps coated with the alginate nanoparticles were 7.62, 1.14 mg MDA/kg, and 117 mg/100 g which were significantly (p < .05) lower than the control groups. The count of all bacteria groups was also lower in this treatment, which was 2-2.74 Log CFU/mL on day 15 of cold storage. This combined treatment also obtained the highest sensory scores (around 7) and the lowest melanosis score (2.67) due to the effective delaying microbial and oxidation activities. Therefore, this edible coating could substantially retard microbial and chemical changes and improve the organoleptic properties of shrimp under refrigerated storage.

7.
BMC Res Notes ; 16(1): 261, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814316

RESUMO

OBJECTIVE: Malaria is a vector-borne disease that causes many deaths worldwide; repellents are a practical approach to malaria prevention, especially in endemic regions. RESULTS: Gas chromatography-mass spectrometry analysis was used to identify compounds in Acroptilon repens essential oil (EO). Alpha-copaene (15.67%), α-cubenen (3.76%), caryophyllene oxide (14.00%), 1-heptadecane (5.61%), and δ-cadinene (2.84) were five major compounds. After that, the nanoemulsion containing the EO with a particle size of 46 ± 4 nm, SPAN 0.85, PDI 0.4, and zeta potential - 5.7 ± 0.4 mV was prepared. Then, it was gellified by adding CMC (carboxymethyl cellulose) to the nanoemulsion. Besides, ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) was used to confirm the EO's successful loading in the nanogel. Finally, the protection time and repellent activity of nanogel compared to DEET (N, N-diethyl-meta-toluamide) were investigated against Anopheles stephensi. Interestingly, the nanogel with a protection time of 310 ± 45 min was significantly more potent than DEET (160 ± 17 min). It could thus be considered for future investigation against other mosquitoes.


Assuntos
Anopheles , Repelentes de Insetos , Malária , Óleos Voláteis , Animais , Humanos , DEET , Óleos Voláteis/farmacologia , Nanogéis , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Malária/prevenção & controle
8.
BMC Complement Med Ther ; 23(1): 435, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041055

RESUMO

BACKGROUND: Using nanoparticles containing L. citriodora EO and citral has shown potential in treating skin disorders such as melanoma. METHODS: In this study, GC‒MS was used to analyze the chemical composition of L. citriodora essential oil (EO). The ion gelation method prepared free chitosan nanoparticles and chitosan nanoparticles containing L. citriodora EO and citral. The successful loading of the EO and citral was evaluated using ATR-FTIR. The DPPH assay measured the antioxidant effect of citral, L. citriodora EO, Citral-ChiNPs, L. citriodora-ChiNPs, and Free-ChiNPs. A375 melanoma cell viability was assessed using the MTT assay. The qPCR technique was employed to evaluate the expression of apoptotic genes, and flow cytometry was used to detect apoptosis. RESULTS: This study showed that in equal concentrations, the antioxidant properties of chitosan nanoparticles containing citral were greater than those of chitosan nanoparticles containing L. citriodora. The IC50 values of chitosan nanoparticles containing citral, L. citriodora EO, and their nonformulated states were 105.6, 199.9, 136.9, and 240 µg/ml, respectively. The gene expression results showed that the ratio of the expression of the apoptosis gene to the inhibitory gene was higher than 1 in all the samples, indicating that the conditions for apoptosis were present. Flow cytometry confirmed cell apoptosis, with 93.5 ± 0.3% in chitosan nanoparticles containing citral, 80 ± 0.2% in chitosan nanoparticles containing L. citriodora EO, 63 ± 0.3 in citral, and 42.03% in L. citriodora EO-treated cells. CONCLUSION: The results showed that using the Nano form of L. citriodora and citral increased their efficiency in apoptosis pathways and their toxicity against 375 melanoma cancer cells.


Assuntos
Quitosana , Lippia , Melanoma , Nanopartículas , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/farmacologia , Apoptose , Melanoma/tratamento farmacológico
9.
BMC Complement Med Ther ; 23(1): 428, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017466

RESUMO

BACKGROUND: Breast cancer is the most common cancer among women, and melanoma is the most dreadful type of skin cancer. Due to the side effects of chemotherapy drugs, the development of new herbal nano-medicines has been considered. METHODS: This study first investigated the chemical composition of Ferula gummosa essential oil using GC-MS analysis; ß-pinene, with 61.57%, was the major compound. Next, alginate nanoparticles containing ß-pinene and the essential oil with particle sizes of 174 ± 7 and 137 ± 6 nm were prepared. Meanwhile, their zeta potentials were 12.4 ± 0.7 and 28.1 ± 1 mV. Besides, the successful loading of ß-pinene and the essential oil in nanoparticles was confirmed using ATR-FTIR analysis. After that, their effects on viability and apoptotic index of human melanoma and breast cancer cells were investigated in normoxia and normobaric hyperoxia (NBO) conditions. RESULTS: The best efficacy on A-375 and MDA-MB-231 cells was achieved by alginate nanoparticles containing the EO at hyperoxic and normoxia conditions; IC50 76 and 104 µg/mL. Besides, it affected apoptosis-involved genes; as Bax/Bcl-2 ratio was higher than 1, conditions for induction of apoptosis were obtained. Higher sensitivity was observed in the A-375 cell line treated with Alg-EO in the NBO model. CONCLUSIONS: Alginate nanoparticles containing F. gummosa EO could be considered for further investigation in anticancer studies. Also, it may be expected that NBO can be a new strategy for delaying cancer progression and improving nanotherapy efficacy.


Assuntos
Neoplasias da Mama , Ferula , Hiperóxia , Melanoma , Óleos Voláteis , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ferula/química , Alginatos , Neoplasias da Mama/tratamento farmacológico , Melanoma/tratamento farmacológico , Proliferação de Células
10.
J Trop Med ; 2023: 5075581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793773

RESUMO

Cuminum cyminum L. is a widespread medicinal plant with a broad spectrum of biological activity. In the present study, the chemical structure of its essential oil was examined utilizing GC-MS analysis (gas chromatography-mass spectrometry). Then, a nanoemulsion dosage form was prepared with a droplet size and droplet size distribution (SPAN) of 121 ± 3 nm and 0.96. After that, the dosage form of the nanogel was prepared; the nanoemulsion was gelified by the addition of 3.0% carboxymethyl cellulose. In addition, the successful loading of the essential oil into the nanoemulsion and nanogel was approved by ATR-FTIR (attenuated total reflection Fourier transform infrared) analysis. The IC50 values (half maximum inhibitory concentration) of the nanoemulsion and nanogel against A-375 human melanoma cells were 369.6 (497-335) and 127.2 (77-210) µg/mL. In addition, they indicated some degrees of an antioxidant activity. Interestingly, after treatment of Pseudomonas aeruginosa with 5000 µg/mL nanogel, bacterial growth was completely (∼100%) inhibited. In addition, the growth of Staphylococcus aureus after treatment with the 5000 µg/ml nanoemulsion was decreased by 80%. In addition, nanoemulsion and nanogel LC50 values for Anopheles stephensi larvae were attained as 43.91 (31-62) and 123.9 (111-137) µg/mL. Given the natural ingredients and promising efficacy, these nanodrugs can be regarded for further research against other pathogens or mosquito larvae.

11.
Sci Rep ; 13(1): 11002, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420038

RESUMO

Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.


Assuntos
Aedes , Anopheles , Artemisia , Culex , Inseticidas , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Larva , Inseticidas/química , Folhas de Planta/química , Extratos Vegetais/química
12.
Iran J Microbiol ; 15(4): 565-573, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38045710

RESUMO

Background and Objectives: This study aimed to develop a natural nanoemulsion with antibacterial and anticancer properties. Materials and Methods: The chemical composition of the Origanum majorana essential oil was investigated using GC-MS analysis. Besides, the successful loading of the essential oil in the nanoemulsion was confirmed using ATR-FTIR analysis. Moreover, nanoemulsion's anticancer, antioxidant, and antibacterial activities were investigated. Results: Terpinen-4-o1 (46.90%) was identified as the major compound in the essential oil. The nanoemulsion with a 149 ± 5 nm droplet size and zeta potential of -11 ± 1 mV was prepared. The cytotoxic effect of the nanoemulsion against A-375 human melanoma cells (IC50 = 139 µg/mL) showed significantly more potency than A-549 human lung cancer cells (IC50 = 318 µg/mL). Interestingly, growth of Staphylococcus aureus (Gram-positive) and E. coli (Gram-negative) bacteria after treatment with 4800 µg/mL of nanoemulsion were obtained at 12 ± 2 and 6 ± 1%, respectively. However, the IC50 value of nanoemulsion against E. coli (580 µg/mL) was not significantly different (P > 0.05) from S. aureus (611 µg/mL). Conclusion: A straightforward preparation method, high stability, and multi-biological effects are the main advantages of the prepared nanoemulsion. Therefore it could be considered for further investigation in vivo studies or complementary medicine.

13.
Acta Parasitol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37979013

RESUMO

PURPOSE: The use of synthetic pesticides to control the spread of mosquito-borne diseases has caused environmental pollution and insecticide resistance in mosquitoes. Developments of new green insecticides have thus received more attention to overcome these problems. METHODS: Nanoliposomes containing carvone and essential oils were first prepared. The nanoliposome physicochemical characteristics (particle size, morphology, and successful loading) were then evaluated by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and the Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) analyses. Larvicidal effects of carvone, Mentha spicata, and Tanacetum balsamita essential oils were investigated against the main malaria vector, Anopheles stephensi, in non-formulated and nanoformulated states. RESULTS: The larvicidal effects of nanoformulated states were significantly more potent (7.2 folds, 3.5 folds, and 8 folds) than non-formulated states. Nanoliposomes containing M. spicata and T. balsamita essential oils with particle sizes of 175 ± 8 and 184 ± 5 nm showed the best efficacies (LC50 values = 9.74 and 9.36 µg/mL). CONCLUSION: The prepared samples could be used as new green potent larvicides against An stephensi mosquito in further field trials. It is also recommended to investigate their efficacies against other mosquitoes.

14.
BMC Complement Med Ther ; 23(1): 84, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934283

RESUMO

INTRODUCTION: Cinnamon is one of the most common spices that has been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil in wound healing. MATERIAL AND METHODS: For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of Control, µCS-CiZ, PCL, and PCL + µCS-CiZ and were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). RESULTS: The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33 ± 1.27 µm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (P < 0.001). The PCL + µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (P < 0.05) and PCL groups (P < 0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue and appearance of moderate to marked fibrotic tissue in PCL + µCS-CiZ group compared with the other groups. CONCLUSION: The results of the study showed that the combined use of PCL + µCS-CiZ indicates a synergistic effect on improving wound healing.


Assuntos
Quitosana , Nanofibras , Óleos Voláteis , Ratos , Animais , Quitosana/farmacologia , Cinnamomum zeylanicum , Óleos Voláteis/farmacologia , Cápsulas , Cicatrização
15.
J Arthropod Borne Dis ; 17(4): 371-382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38868673

RESUMO

Background: Malaria has remained the most dreadful vector-borne disease; hence, vector control is the most affordable and achievable approach to mitigate the disease burden. Due to the emergence of resistance and environmental pollution, herbal larvicides are considered an alternative to chemical types. Also, nanotechnology has been proposed as a promising solution to improve the efficiency of plant larvicides. This study aimed to develop an effective herbal larvicide. Methods: The chemical composition of Elettaria cardamomum essential oil (EO) was first investigated. Nanoliposomes containing the EO were then prepared using the ethanol injection method. After that, the larvicidal efficacy of the EO and its liposomal state were compared against Anopheles stephensi in laboratory conditions. Results: Alpha-terpinyl acetate (77.59%), eucalyptol (4.38%), nerolidol (2.96%), linalool (1.77%), and limonene (1.69%) were the five major compounds of the EO. Nanoliposomes containing the EO with a particle size of 73±5 nm and a zeta potential of -16.3±0.8 mV were prepared. Additionally, the ATR-FTIR analysis verified the successful loading of the EO into nanoliposomes. The larvicidal activity of nanoliposomes exhibited remarkable potency, with an LC50 value of 14.35 (10-18) µg/mL, significantly more potent than the non-formulated EO, which had an LC50 value of 33.47 (28-39) µg/mL against Anopheles stephensi larvae. Conclusion: The nanoliposomes containing E. cardamomum EO showed promising efficacy against An. stephensi larvae. It could thus be considered for further application against other species of mosquitoes.

16.
Acta Parasitol ; 67(3): 1265-1272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704149

RESUMO

PURPOSE: An attempt was made in the current study to develop a natural mosquito larvicide using nanotechnology. METHODS: Solid lipid nanoparticles (SLNs) containing three essential oils were first prepared using the high-pressure homogenizer. Larvicidal effects of essential oils and the SLNs against Anopheles stephensi were then compared. RESULTS: The size of SLN containing Mentha longifolia, Mentha pulegium, Zataria multiflora essential oil was obtained as 105 ± 7, 210 ± 4, and 137 ± 8 nm. Their zeta potentials were - 7.8, - 4.7, and - 9.7 mV. Besides, their efficacy with LC50 values of 24.79, 5.11, and 9.19 µg/mL was significantly more potent than that of their un-formulated essential oils with LC50 values of 36.2, 27.55, and 33.33 µg/mL. CONCLUSION: SLNs containing M. pulegium with the best efficacy (P < 0.05) could be considered as potent larvicides against other important species of mosquitoes and field trials.


Assuntos
Anopheles , Inseticidas , Lamiaceae , Óleos Voláteis , Animais , Inseticidas/farmacologia , Lamiaceae/química , Larva , Lipossomos , Mentha/química , Mentha pulegium/química , Mosquitos Vetores , Nanopartículas , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia
17.
Interdiscip Perspect Infect Dis ; 2022: 1645485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784810

RESUMO

Malaria is the most important vector-borne disease; however, mosquito repellents are still a practical approach for controlling malaria, especially in endemic regions. Due to the side effects of synthetic repellents such as N, N-diethyl-meta-toluamide (DEET), the development of natural repellents has received much attention. In this study, nanoliposomes containing 0.5 and 2.5% w/v Cinnamomum zeylanicum essential oil were firstly prepared with particle sizes of 119 ± 6 and 195 ± 9 nm. Their morphologies and loading of the essential oil in the particles were then investigated using transmission electron microscopy (TEM) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) analyses. The nanoliposomes were finally jellified to increase their viscosity and facilitate topical usage. The complete protection time of the nanoliposomal gel containing 2.5% C. zeylanicum essential oil was significantly longer than that of 2.5% DEET against Anopheles stephensi: 303 ± 10 > 242 ± 12 min, p < 0.001. Moreover, the prepared nanoformulation was stable for at least six months at 4 and 26°C. Therefore, the prepared prototype could be considered a natural repellent against the main malaria mosquito vector in field conditions. In addition, it is suggested to be investigated against other important factors mosquitoes.

18.
BMC Complement Med Ther ; 22(1): 143, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596157

RESUMO

BACKGROUND: Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum) essential oils are two medicinally important plant-derived substances with a wide range of biological properties. Besides, nanoemulsion-based gels have been widely used to increase topical drug delivery and effectiveness. METHODS: This study aimed to explore the anti-inflammatory effect (paw edema test) and the anti-nociceptive effect (hot plate and formalin test) of nanoemulsion-based gels containing the essential oils in the animal model. Cinnamon and Clove essential oils nanoemulsions with droplet sizes of 28 ± 6 nm and 12 ± 3 nm were first prepared. By adding carboxymethylcellulose (3.5% w/v), the nanoemulsions were then gelified. Finally, the nanogels were characterized by ATR-FTIR analysis and were used as topical pre-treatment before induction of inflammation or pain in acute and chronic analgesic experimental studies. RESULTS: The paw edema and formalin findings showed that the nanogels formulations possess significant anti-nociceptive and anti-inflammatory effects. CONCLUSION: The prepared nanogels could be considered as analgesic drugs for inhibiting the inflammation and pain of diseases.


Assuntos
Óleos Voláteis , Syzygium , Animais , Anti-Inflamatórios/farmacologia , Cinnamomum zeylanicum , Óleo de Cravo/farmacologia , Inflamação , Nanogéis , Óleos Voláteis/farmacologia , Dor/tratamento farmacológico
19.
BMC Complement Med Ther ; 22(1): 140, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590314

RESUMO

BACKGROUND: Mosquito-borne diseases such as malaria and encephalitis are still the cause of several hundred thousand deaths annually. The excessive use of chemical insecticides for transmission control has led to environmental pollution and widespread resistance in mosquitoes. Botanical insecticides' efficacies improvement has thus received considerable attention recently. METHODS: The larvicidal effects of three essential oils from the Citrus family and limonene (their major ingredient) were first investigated against malaria and filariasis mosquito vectors. An attempt was then made to improve their efficacies by preparing nanoliposomes containing each of them. RESULTS: The larvicidal effect of nanoformulated forms was more effective than non-formulated states. Nanoliposomes containing Citrus aurantium essential oil with a particle size of 52 ± 4 nm showed the best larvicidal activity (LC50 and LC90 values) against Anopheles stephensi (6.63 and 12.29 µg/mL) and Culex quinquefasciatus (4.9 and 16.4 µg/mL). CONCLUSION: Due to the green constituents and high efficacy of nanoliposomes containing C. aurantium essential oil, it could be considered for further investigation against other mosquitoes' populations and field trials.


Assuntos
Aedes , Filariose , Inseticidas , Malária , Óleos Voláteis , Animais , Inseticidas/farmacologia , Larva , Limoneno/farmacologia , Malária/tratamento farmacológico , Malária/prevenção & controle , Mosquitos Vetores , Óleos Voláteis/farmacologia , Folhas de Planta
20.
BMC Complement Med Ther ; 22(1): 261, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207726

RESUMO

BACKGROUND: As the largest organ, the skin has been frequently affected by trauma, chemical materials, toxins, bacterial pathogens, and free radicals. Recently, many attempts have been made to develop natural nanogels that, besides hydrating the skin, could also be used as antioxidant or antibacterial agents. METHODS: In this study, the chemical composition of the Mentha spicata essential oil was first investigated using GC-MS analysis. Its nanoemulsion-based nanogel was then investigated; successful loading of the essential oil in the nanogel was confirmed using FTIR analysis. Besides, nanogel's antioxidative, anticancer, and antibacterial activities were investigated. RESULTS: Carvone (37.1%), limonene (28.5%), borneol (3.9%), ß-pinene (3.3%), and pulegone (3.3%) were identified as five major compounds in the essential oil. By adding carboxymethylcellulose (3.5% w/v) to the optimal nanoemulsion containing the essential oil (droplet size of 196 ± 8 nm), it was gelified. The viscosity was fully fitted with a common non-Newtonian viscosity regression, the Carreau-Yasuda model. The antioxidant effect of the nanogel was significantly more potent than the essential oil (P < 0.001) at all examined concentrations (62.5-1000 µg/mL). Furthermore, the potency of the nanogel with an IC50 value of 55.0 µg/mL was substantially more (P < 0.001) than the essential oil (997.4 µg/mL). Also, the growth of Staphylococcus aureus and Escherichia coli after treatment with 1000 µg/mL nanogel was about 50% decreased compared to the control group. Besides, the prepared electrospun polycaprolactone-hydroxypropyl methylcellulose nanofibers mat with no cytotoxic, antioxidant, or antibacterial effects was proposed as lesion dressing after treatment with the nanogel. High potency, natural ingredients, and straightforward preparation are advantages of the prepared nanogel. Therefore, it could be considered for further consideration in vivo studies.


Assuntos
Toxinas Bacterianas , Mentha spicata , Nanofibras , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Toxinas Bacterianas/farmacologia , Carboximetilcelulose Sódica/farmacologia , Escherichia coli , Radicais Livres/farmacologia , Derivados da Hipromelose/farmacologia , Limoneno/farmacologia , Mentha spicata/química , Testes de Sensibilidade Microbiana , Nanogéis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Poliésteres , Polietilenoglicóis , Polietilenoimina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa