Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236406

RESUMO

Harmful algal blooms in freshwater reservoirs became a steady phenomenon in recent decades, so instruments for monitoring water quality in real time are of high importance. Modern satellite remote sensing is a powerful technique for mapping large areas but cannot provide depth-resolved data on algal concentrations. As an alternative to satellite techniques, laser remote sensing is a perspective technique for depth-resolved studies of fresh or seawater. Recent progress in lasers and electronics makes it possible to construct compact and lightweight LiDARs (Light Detection and Ranging) that can be installed on small boats or drones. LiDAR sensing is an established technique; however, it is more common in studies of seas rather than freshwater reservoirs. In this study, we present an experimental verification of a compact LiDAR as an instrument for the shipborne depth profiling of chlorophyll concentration across the freshwater Lake Kinneret (Israel). Chlorophyll depth profiles of 3 m with a 1.5 m resolution were measured in situ, under sunlight conditions. A good correlation (R2 = 0.89) has been established between LiDAR signals and commercial algae profiler data. A non-monotonic algae depth distribution was observed along the boat route during daytime (Tiberias city-Jordan River mouth-Tiberias city). The impact of high algal concentration on water temperature laser remote sensing has been studied in detail to estimate the LiDAR capability of in situ simultaneous measurements of temperature and chlorophyll concentration.


Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Clorofila/análise , Clorofila A , Monitoramento Ambiental/métodos , Lasers
2.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27597444

RESUMO

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Assuntos
Ecossistema , Lagos , Monitoramento Ambiental , Recreação
3.
J Acoust Soc Am ; 139(2): 881-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26936569

RESUMO

Internal Kelvin waves (IKWs) initiated by rotation of the Earth are one of the main hydrodynamic phenomena in large stratified lakes where baroclinic Rossby radius of deformation is smaller than the horizontal scale of the lake. IKWs can be identified using the spectra of internal waves, where in the presence of IKWs, the inertial frequency is at maximum. IKWs play a rather important role in the lake's dynamics for different processes, both in the water layer and sediment, especially at the periphery of lake. Due to influence of internal waves on the sound propagation, acoustical methods can be used for estimation of behaviour of IKWs. In this paper, the spatiotemporal variability of the mid-frequency (∼1 kHz) sound field in the presence of IKWs in a deep stratified Lake Kinneret is studied using numerical simulations based on normal-mode theory. Due to the specific character of perturbation of the water layer, IKWs can cause specific variations of interference pattern, in particular, a significant shift of the sound interference pattern both in spatial and frequency domain. These shifts can be easily measured and used for reconstruction of IKW parameters.

4.
Water Res ; 252: 121213, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306752

RESUMO

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins. A series of field experiments were carried out during bloom seasons to evaluate the salt tolerance of natural Microcystis colonies. The salt tolerance threshold varied from 7 to 17 and showed a positive relationship with intracellular carbohydrate content and a negative relationship with nitrogen availability in water. In August when upstream nitrogen availability was lower, the Microcystis colonies could maintain their biomass even after a sudden increase in salinity from 4 to 10. Laboratory-cultivated Microcystis that accumulated higher carbohydrate content at lower nitrogen availability showed better cell survival at higher salinity. The sharp release of microcystins into the surrounding water occurred when salinity exceeded the salt tolerance threshold of the Microcystis. Thus, Microcystis with higher salt tolerance can accumulate more toxins in cells. The obtained results suggest that the cell survival and toxin concentration in brackish waters depend on the physiological properties of Microcystis formed in the upstream waters. Thus, the life history of Microcystis in upstream waters could have a significant impact on its salt tolerance in downstream brackish waters, where the ecological risk of the salt-tolerant Microcystis requires special and careful management in summer at low nitrogen availability.


Assuntos
Microcystis , Microcystis/fisiologia , Microcistinas , Tolerância ao Sal , Nitrogênio , Lagos/microbiologia , Águas Salinas , Água , Carboidratos
5.
Sci Total Environ ; 805: 150423, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818810

RESUMO

Cyanobacteria are notorious for producing harmful algal blooms that present an ever-increasing serious threat to aquatic ecosystems worldwide, impacting the quality of drinking water and disrupting the recreational use of many water bodies. Remote sensing techniques for the detection and quantification of cyanobacterial blooms are required to monitor their initiation and spatiotemporal variability. In this study, we developed a novel semi-analytical approach to estimate the concentration of cyanobacteria-specific pigment phycocyanin (PC) and common phytoplankton pigment chlorophyll a (Chl a) from hyperspectral remote sensing data. The PC algorithm was derived from absorbance-concentration relationship, and the Chl a algorithm was devised based on a conceptual three-band structure model. The developed algorithms were applied to satellite imageries obtained by the Hyperspectral Imager for the Coastal Ocean (HICO™) sensor and tested in Lake Kinneret (Israel) during strong cyanobacterium Microcystis sp. bloom and out-of-bloom times. The sensitivity of the algorithms to errors was evaluated. The Chl a and PC concentrations were estimated with a mean absolute percentage difference (MAPD) of 16% and 28%, respectively. Sensitivity analysis shows that the influences of backscattering and other water constituents do not affect the estimation accuracy of PC (~2% MAPD). The reliable PC/Chl a ratios can be obtained at PC concentrations above 10 mg m-3. The computed PC/Chl a ratio depicts the contribution of cyanobacteria to the total phytoplankton biomass and permits investigating the role of ambient factors in the formation of a complex planktonic community. The novel algorithms have extensive practical applicability and should be suitable for the quantification of PC and Chl a in aquatic ecosystems using hyperspectral remote sensing data as well as data from future multispectral remote sensing satellites, if the respective bands are featured in the sensor.


Assuntos
Cianobactérias , Ecossistema , Algoritmos , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Imageamento Hiperespectral , Lagos , Tecnologia de Sensoriamento Remoto
6.
Sci Total Environ ; 794: 148573, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225151

RESUMO

Cyanobacterial harmful algal blooms (HABs) are increasing in a growing number of aquatic ecosystems around the world due to eutrophication and climatic change over the past few decades. Quantitative monitoring of HABs remains a challenge because their distributions are spatially heterogeneous and temporally variable. Most of the standard biological sampling methods are labor intensive and time consuming. In this paper, we present an efficient acoustic method to assess the biomass (biovolume) concentration of the cyanobacterium Microcystis in aquatic ecosystems. Acoustic backscattering vertical profiles from a gas-bearing Microcystis population were measured with echosounders at three frequencies (70, 120, and 333 kHz) in Lake Kinneret (case study). Concurrently, the volume concentration of Microcystis colonies and cyanobacteria-related Chlorophyll a were evaluated. We developed a partially coherent acoustic scattering model to quantify the cyanobacterium biomass based on depth-dependent acoustic backscattering signals. We also evaluated empirical regression models to obtain the Microcystis biomass from acoustically measured volume backscattering strength, Sv. It is demonstrated that both methods can convert the Sv to Microcystis biovolume concentrations reasonably well. Pro and cons of these methods are discussed. The results suggest that the presented methods may have a potential to be used for broader applications to monitor and quantify the gas-containing plankton in large aquatic ecosystems.


Assuntos
Cianobactérias , Microcystis , Acústica , Biomassa , Clorofila A , Ecossistema , Eutrofização , Proliferação Nociva de Algas , Lagos
7.
Water Res ; 183: 116091, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623244

RESUMO

Harmful cyanobacterial blooms pose a serious environmental threat to freshwater lakes and reservoirs. Investigating the dynamics of toxic bloom-forming cyanobacterial genus Microcystis is a challenging task due to its huge spatiotemporal heterogeneity. The hydroacoustic technology allows for rapid scanning of the water column synoptically and has a significant potential for rapid, non-invasive in situ quantification of aquatic organisms. The aim of this work is to develop a reliable cost-effective method for the accurate quantification of the biomass (B) of gas-bearing cyanobacterium Microcystis in water bodies using a high-frequency scientific echosounder. First, we showed that gas-bearing Microcystis colonies are much stronger backscatterers than gas-free phytoplanktonic algae. Then, in the tank experiments, we found a strong logarithmic relationship between the volume backscattering coefficient (sv) and Microcystis B proxies, such as Microcystis-bound chlorophyll a (Chl aMicro) and particle volume concentration. The sv/B ratio remained unchanged over a wide range of B concentrations when the same source of Microcystis material was used. Our measurements in Lake Dianchi (China) also revealed strong logarithmic relationship between sv and Chl aMicro. The biomass-calibrated echosounder was used to study the diurnal variability of Microcystis B in the lake. We found a sharp increase in the cyanobacterium B and sv/Chl aMicro ratio near the water surface during the daytime and more uniform distribution of these parameters during the nighttime. We argue that the variations in B and sv/Chl aMicro ratio could be associated with temporal changes in thermal stratification and turbulent mixing. Our data suggest that the sv/Chl aMicro ratio positively correlates with (i) the percentage of larger colonies in population and/or (ii) the content of free gas in cells. The last properties allow Microcystis colonies to attain rapid floating, which enables them to concentrate at the water surface at conducive ambient conditions. The sv/Chl aMicro ratio can be a new important variable reflecting the ability of Microcystis colonies to migrate vertically. Monitoring of this ratio may help to determine the early warning threshold for Microcystis scum formation. The proposed acoustic technology for in situ quantification of Microcystis biomass can be a powerful tool for accurate monitoring and assessment of this cyanobacterium at high spatiotemporal resolution in water bodies.


Assuntos
Cianobactérias , Microcystis , China , Clorofila A , Monitoramento Ambiental , Lagos
8.
Sci Total Environ ; 728: 138727, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361580

RESUMO

Cyanobacteria of the genus Microcystis produces surface scum that negatively affects water quality in inland waters. This scum layer can be disintegrated and vertically dispersed by external forces (e.g., wind mixing), followed by reformation of surface scum as buoyant Microcystis colonies migrate upward. However, the recovery dynamics of Microcystis surface scum following a strong mixing event have rarely been studied. Here, we used a tank experiment to investigate the process of Microcystis surface scum recovery after a mixing event with focus on dynamics of colonies of different size classes and their contribution to that process. Microcystis colony size distribution and colony volume concentration was measured using a laser in-situ scattering and transmissometry instrument. The dynamics of Microcystis in the water column and upward colony migration velocity were strongly dependent on colony size. Larger colonies (>180 µm) with fast upward migration rates contributed the most to surface scum formation shortly after turbulence subsided. The contribution of slowly migrating smaller colonies to scum formation was observed over notably longer time. The estimated floating velocities of large colonies ranged 0.15 to 0.46 m h-1 depending on colony size and were 5-15 times higher than those of smaller colonies (~0.03 m h-1). The changes in colony size distribution of Microcystis in the water column reflect the dynamics of surface scum. Analysis of size distribution of Microcystis colonies can be used for better understanding and prediction of Microcystis surface scum development in water bodies.


Assuntos
Cianobactérias , Microcystis , Veículos Automotores , Água , Qualidade da Água
9.
Harmful Algae ; 93: 101796, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32307076

RESUMO

Nitrogen availability is one of the key factors affecting the dynamics of non-diazotrophic cyanobacterial blooms in eutrophic lakes. While previous studies mainly focused on the promoting effect of nitrogen on the growth of cyanobacteria, this study aimed to investigate the role of nitrogen availability in the downward transport of biomass and its effects on the dynamics of Microcystis blooms. We performed field enclosure experiments which demonstrated that nitrogen availability negatively affects the downward transport of biomass. With a nitrogen loading of 0.02 g N m-2 d-1, the Microcystis biomass in the water column decreased by 56.2% over a 4-day period. During the same period of time, the average sinking ratio was 0.23 d-1; moreover, the termination of biomass growth was detected. At the notably higher nitrogen loading of 0.5 g N m-2d-1, the downward transport of biomass could still compensate for the biomass growth, although the average sinking ratio was lower at 0.16 d-1. Additional laboratory culture experiments demonstrated that the increase in the downward transport of Microcystis occurred in parallel to an increase in the carbohydrate content and a decrease in gas vesicle content. Further proteomic analysis indicated that the carbohydrate accumulation induced by nitrogen deficiency was a result of the slowing down of catabolic consumption, especially the downregulation of glycolysis. Thus, our study suggests that increased intracellular carbohydrate accumulation at low nitrogen availability causes a higher sinking ratio of Microcystis, indicating that nitrogen limits the duration of Microcystis blooms; thus, decreased nitrogen availability may lead to increased sinking of biomass out of the water column, accelerating the dissipation of Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Biomassa , Nitrogênio , Proteômica
10.
Nat Commun ; 11(1): 2526, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433562

RESUMO

Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970-2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.


Assuntos
Pesqueiros , Lagos/química , Animais , Mudança Climática , Ecossistema , Peixes/crescimento & desenvolvimento , Humanos , Temperatura , Qualidade da Água
11.
Environ Sci Technol ; 44(7): 2419-25, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20218543

RESUMO

Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Metano/análise , Centrais Elétricas , Poluentes Químicos da Água/análise , Atmosfera/química , Oxirredução , Solubilidade , Propriedades de Superfície , Suíça , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa