Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Mater ; 21(12): 1434-1440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357688

RESUMO

The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. Here we present a predictable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multicomponent graft block copolymers containing sequence-defined side chains. The judicious design of various structural parameters in the graft block copolymers enables broadly tunable compositions, morphologies and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces advanced design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.


Assuntos
Nanoestruturas , Nanoestruturas/química , Polímeros/química
2.
Soft Matter ; 19(35): 6851-6854, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646194

RESUMO

Correction for 'Cross-linkable, phosphobetaine-based, zwitterionic amphiphiles that form lyotropic bicontinuous cubic phases' by Lauren N. Bodkin et al., Soft Matter, 2023, 19, 3768-3772, https://doi.org/10.1039/D3SM00269A.

3.
Soft Matter ; 19(21): 3768-3772, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191297

RESUMO

The design, synthesis, and lyotropic liquid crystal phase behaviour of six cross-linkable, phosphobetaine-based, zwitterionic amphiphiles are described. Two form a QII phase with aq. NH4Cl solution, giving 3D-nanoporous membrane materials that can be used for water desalination and are not susceptible to ion exchange like traditional ionic analogues.

4.
J Am Chem Soc ; 144(1): 390-399, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962798

RESUMO

Optically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain. UV-induced trans-to-cis Azo isomerization, and vice versa in the absence of UV light, drive disordering and ordering of lamellar superstructures and smectic mesophases, as manifested by liquefaction and solidification of the material, respectively. The impacts of chemical structure on BCO self-assembly and photoswitching kinetics are explored by in situ microscopy and X-ray measurements for different mesogen end groups (NO2 or CN), and different carbon chain lengths (0C or 12C) between the siloxane and the mesogen. The presence of the 12C spacer leads to hierarchical ordering with smectic layers of mesogens existing alongside larger length-scale lamellae, versus only smectic ordering without the spacer. These hierarchically ordered BCOs display highly persistent lamellar sheets that contrast with the tortuous, low-persistence "fingerprint"-type structures seen in conventional block copolymers. The reordering kinetics upon removal of UV illumination are extremely rapid (<5 s). This fast response is due to the electron-withdrawing NO2 and CN, which facilitate cis-to-trans isomerization via thermal relaxation at room temperature without additional stimuli. This work elucidates structure-property relationships in photoswitching BCOs and advances the possibility of developing systems in which ordered nanostructures can be easily optically written and erased.

5.
Soft Matter ; 17(17): 4517-4524, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710229

RESUMO

Microcapsules are commonly used in applications ranging from therapeutics to personal care products due to their ability to deliver encapsulated species through their porous shells. Here, we demonstrate a simple and scalable approach to fabricate microcapsules with porous shells by interfacial complexation of cellulose nanofibrils and oleylamine, and investigate the rheological properties of suspensions of the resulting microcapsules. The suspensions of neat capsules are viscous liquids whose viscosity increases with volume fraction according to a modified Kreiger-Dougherty relation with a maximum packing fraction of 0.74 and an intrinsic viscosity of 4.1. When polyacrylic acid (PAA) is added to the internal phase of the microcapsules, however, the suspensions become elastic and display yield stresses with power-law dependencies on capsule volume fraction and PAA concentration. The elasticity appears to originate from associative microcapsule interactions induced by PAA that is contained within and incorporated into the microcapsule shell. These results demonstrate that it is possible to tune the rheological properties of microcapsule suspensions by changing only the composition of the internal phase, thereby providing a novel method to tailor complex fluid rheology.


Assuntos
Celulose , Cápsulas , Reologia , Suspensões , Viscosidade
6.
Nat Mater ; 18(11): 1235-1243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31209387

RESUMO

Creating well-defined single-crystal textures in materials requires the biaxial alignment of all grains into desired orientations, which is challenging to achieve in soft materials. Here we report the formation of single crystals with rigorously controlled texture over macroscopic areas (>1 cm2) in a soft mesophase of a columnar discotic liquid crystal. We use two modes of directed self-assembly, physical confinement and magnetic fields, to achieve control of the orientations of the columnar axes and the hexagonal lattice along orthogonal directions. Field control of the lattice orientation emerges in a low-temperature phase of tilted discogens that breaks the field degeneracy around the columnar axis present in non-tilted states. Conversely, column orientation is controlled by physical confinement and the resulting imposition of homeotropic anchoring at bounding surfaces. These results extend our understanding of molecular organization in tilted systems and may enable the development of a range of new materials for distinct applications.

7.
Soft Matter ; 16(10): 2574-2580, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083258

RESUMO

The rheological properties of emulsions are of considerable importance in a diverse range of scenarios. Here we describe a superposition of the effects of droplet elasticity and volume fraction on the dynamics of emulsions. The superposition is governed by physical interactions between droplets, and provides a new mechanism for modifying the flow behavior of emulsions, by controlling the elasticity of the dispersed phase. We investigate the properties of suspensions of emulsified wormlike micelles (WLM). Dense suspensions of the emulsified WLM droplets exhibit thermally responsive properties in which the viscoelastic moduli decrease by an order of magnitude over a temperature range of 0 °C to 25 °C. Surprisingly, the dependence of modulus on volume fraction is independent of droplet stiffness. Instead, the emulsion modulus scales as a power-law with volume fraction with a constant exponent across all temperatures even as the droplet properties change from elastic to viscous. Nevertheless, the underlying droplet dynamics depend strongly on temperature. From stress relaxation experiments, we quantify droplet dynamics across the cage breaking time scale below which the droplets are locally caged by neighbors and above which the droplets escape their cages to fully relax. For elastic droplets and high volume fractions, droplets relax less stress on short time scales and the terminal relaxations are slower than for viscous droplets and lower volume fractions. Characteristic measures of the short and long-time dynamics are highly correlated for variations in both temperature and emulsion concentration, suggesting that thermal and volume fraction effects represent independent parameters to control emulsion properties.

8.
Environ Sci Technol ; 54(15): 9640-9651, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32598838

RESUMO

Increased demand for highly selective and energy-efficient separations processes has stimulated substantial interest in emerging two-dimensional (2D) nanomaterials as a potential platform for next-generation membranes. However, persistently poor separation performance continues to hinder the viability of many novel 2D-nanosheet membranes in desalination applications. In this study, we examine the role of the lamellar structure of 2D membranes on their performance. Using self-fabricated molybdenum disulfide (MoS2) membranes as a platform, we show that the separation layer of 2D nanosheet frameworks not only fails to demonstrate water-salt selectivity but also exhibits low rejection toward dye molecules. Moreover, the MoS2 membranes possess a molecular weight cutoff comparable to its underlying porous support, implying negligible selectivity of the MoS2 layer. By tuning the nanochannel size through intercalation with amphiphilic molecules and analyzing mass transport in the lamellar structure using Monte Carlo simulations, we reveal that small imperfections in the stacking of MoS2 nanosheets result in the formation of catastrophic microporous defects. These defects lead to a precipitous reduction in the selectivity of the lamellar structure by negating the interlayer sieving mechanism that prevents the passage of large penetrants. Notably, the imperfect stacking of nanosheets in the MoS2 membrane was further verified using 2D X-ray diffraction measurements. We conclude that developing a well-controlled fabrication process, in which the lamellar structure can be carefully tuned, is critical to achieving defect-free and highly selective 2D desalination membranes.


Assuntos
Molibdênio , Nanoestruturas , Dissulfetos , Membranas Artificiais
9.
Proc Natl Acad Sci U S A ; 114(46): E9793-E9801, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29078354

RESUMO

The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli, GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.


Assuntos
Antibacterianos/farmacologia , Grafite/química , Grafite/farmacologia , Nanoestruturas/química , Óxidos/química , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Transporte de Elétrons , Escherichia coli/efeitos dos fármacos , Glutationa/metabolismo , Imobilização , Campos Magnéticos , Microscopia de Força Atômica , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(45): E9437-E9444, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078379

RESUMO

The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP's anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system's nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles.

11.
Langmuir ; 34(3): 1092-1099, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29095629

RESUMO

Maintaining suspension stability by effective particle dispersion in systems with attractive interactions can be accomplished by the addition of dispersants that modify the interparticle potential to provide steric or electrostatic barriers against aggregation. The efficacy of such dispersants is typically considered simply by the modification of suspension rheological properties as a function of the overall added dispersant concentration. However, such considerations do little to reveal the molecular origin of differences in dispersant efficacy because they do not consider differences in surface activity. We combine measured adsorption isotherms with the rheological characterization of the elasticity of colloidal gels formed by particle aggregation to provide a more meaningful assessment of dispersant efficacy. The rheological data show that the dispersants are effective at reducing particle aggregation, whereas, from the adsorption isotherms, they differ considerably in their surface coverage at constant overall concentration. When compared at constant dispersant particle surface coverage, the gel rheology shows marked differences across the different dispersants, as opposed to comparisons at constant overall dispersant concentration in the suspensions. In particular, the power-law volume fraction scaling of gel elasticity at constant coverage reveals clear differences in the critical volume fraction for gel formation for the different dispersants. The most efficacious dispersant is that associated with the largest critical volume fraction for gel formation at a given surface coverage. This work demonstrates the utility of rheological investigations coupled with accurate determinations of surface coverage to better differentiate dispersant performance, which may improve efforts to engineer new dispersant molecules.

12.
Environ Sci Technol ; 52(13): 7279-7288, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29851340

RESUMO

We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a poly(ether sulfone) support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ∼1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ∼0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (∼90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.


Assuntos
Fluorocarbonos , Membranas Artificiais , Nylons , Polimerização , Água
13.
Angew Chem Int Ed Engl ; 57(28): 8493-8497, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697893

RESUMO

The graft-through synthesis of Janus graft block copolymers (GBCPs) from branched macromonomers composed of various combinations of homopolymers is presented. Self-assembly of GBCPs resulted in ordered nanostructures with ultra-small domain sizes down to 2.8 nm (half-pitch). The grafted architecture introduces an additional parameter, the backbone length, which enables control over the thermomechanical properties and processability of the GBCPs independently of their self-assembled nanostructures. The simple synthetic route to GBCPs and the possibility of using a variety of polymer combinations contribute to the universality of this technique.

14.
J Am Chem Soc ; 139(44): 15977-15983, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043793

RESUMO

Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.


Assuntos
Dendrímeros/química , Nanoestruturas/química , Peptídeos/química , Dendrímeros/síntese química , Cristais Líquidos/química , Modelos Moleculares , Peptídeos/síntese química , Conformação Proteica em alfa-Hélice
15.
Langmuir ; 33(40): 10690-10697, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28885029

RESUMO

We present a strategy for robustly cross-linking self-assembled lamellar mesophases made from plant-derived materials to generate polymer nanosheets decorated with a high density of functional groups. We formulate a supramoleclar complex by hydrogen-bonding conjugated linoleic acid moieties to a structure-directing tribasic aromatic core. The resulting constructs self-assemble into a thermotropic lamellar mesophase. Photo-cross-linking the mesophase with the aid of an acrylate cross-linker yields a polymeric material with high-fidelity retention of the lamellar mesophase structure. Transmission electron microscopy images demonstrate the preservation of the large area, highly ordered layered nanostructures in the polymer. Subsequent extraction of the tribasic core and neutralization of the carboxyl groups by NaOH result in exfoliation of polymer nanosheets with a uniform thickness of ∼3 nm. The nanosheets have a large specific area of ∼800 m2/g, are decorated by negatively charged carboxylate groups at a density of 4 nm-2, and exhibit the ability to readily adsorb positively charged colloidal particles. The strategy as presented combines supramolecular self-assembly with the use of renewable or sustainably derived materials in a scalable manner. The resulting nanosheets have potential for use as adsorbents and, with further development, rheology modifiers.

16.
Langmuir ; 33(47): 13590-13597, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29094950

RESUMO

Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.


Assuntos
Biofilmes , Proteínas de Bactérias , Cápsulas , Emulsões , Interações Hidrofóbicas e Hidrofílicas
17.
Soft Matter ; 13(15): 2733-2737, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28358160

RESUMO

Microcapsules with high mechanical stability and elasticity are desirable in a variety of contexts. We report a single-step method to fabricate such microcapsules by microfluidic interfacial complexation between high stiffness cellulose nanofibrils (CNF) and an oil-soluble cationic random copolymer. Single-capsule compression measurements reveal an elastic modulus of 53 MPa for the CNF-based capsule shell with complete recovery of deformation from strains as large as 19%. We demonstrate the ability to manipulate the shell modulus by the use of polyacrylic acid (PAA) as a binder material, and observe a direct relationship between the shell modulus and the PAA concentration, with moduli as large as 0.5 GPa attained. These results demonstrate that CNF incorporation provides a facile route for producing strong yet flexible microcapsule shells.

18.
Langmuir ; 32(42): 10815-10823, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27696868

RESUMO

A current challenge to desalination membrane technology is the inability to precisely control the properties of the polyamide selective layer due to the complexity of interfacial polymerization. In this study, we investigate the ability of molecular layer-by-layer (mLbL) assembly, an alternative polyamide fabrication technique, to create polyamide surfaces with tunable chemistry. We explore the influence of terminating monomer, monomer deposition time, monomer size, and the presence of underlying ionizable functional groups on mLbL-derived polyamide surface properties. AFM colloidal probe measurements, contact angle titrations, QCM cesium adsorption experiments, and XPS data show that polyamide films terminated with m-phenylenediamine or trimesoyl chloride for 20-30 s are chemically similar. Increasing terminating monomer deposition time or using a smaller, more reactive monomer results in more distinct colloidal-probe adhesive interactions, contact angle titration curves, negative charge densities, and near surface atomic compositions. By optimizing the final monomer deposition steps, both amine-rich and carboxyl-rich polyamide surfaces can be fabricated, which has implications for the application of mLbL assembly to membrane-based desalination.

19.
Soft Matter ; 12(1): 157-64, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26466557

RESUMO

Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ∼ c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ≈ 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ≈ 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems.


Assuntos
Celulose/química , Nanofibras/química , Tensoativos/química , Géis/química , Micelas , Reologia
20.
Nano Lett ; 15(6): 3735-42, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25938382

RESUMO

Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ∼127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.


Assuntos
Artrópodes/química , Artrópodes/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pigmentação , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa