Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 97(3): 449-465, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024988

RESUMO

Chemotherapy can cause early menopause or infertility in women and have a profound negative impact on the quality of life of young female cancer survivors. Various factors are known to influence the risk of chemotherapy-induced ovarian failure, including the drug dose and treatment duration; however, the scheduling of dose administration has not yet been evaluated as an independent risk factor. We hypothesized that low-dose metronomic (LDM) chemotherapy scheduling would be less detrimental to ovarian function than the traditional maximum tolerated dose (MTD) strategy. In vitro, MTD cyclophosphamide exposure resulted in decreased proliferation and increased granulosa cell apoptosis, while cells treated with LDM cyclophosphamide were not different from untreated controls. Treatments of MTD cyclophosphamide induced high levels of follicle atresia and enhanced follicle recruitment in mice. In contrast, LDM delivery of an equivalent dose of cyclophosphamide reduced growing follicle numbers, but was not associated with higher levels of follicle atresia or recruitment. MTD cyclophosphamide induced significant vascular disruption and DNA damage in vivo, while LDM chemotherapy with equal cumulative amounts of cyclophosphamide was not different from controls. MTD chemotherapy also had a negative effect on mouse-fertility outcomes. Our findings suggest that LDM scheduling could potentially minimize the long-term effects of cyclophosphamide on female fertility by preventing follicle depletion from enhanced activation.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/toxicidade , Ciclofosfamida/administração & dosagem , Ciclofosfamida/toxicidade , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Ovário/efeitos dos fármacos , Animais , Vasos Sanguíneos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Sistemas de Liberação de Medicamentos , Ciclo Estral/efeitos dos fármacos , Feminino , Atresia Folicular/efeitos dos fármacos , Células da Granulosa/ultraestrutura , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Ratos
2.
Reprod Biol Endocrinol ; 12: 21, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628875

RESUMO

BACKGROUND: Ovarian angiogenesis is a complex process that is regulated by a balance between pro- and anti-angiogenic factors. Physiological processes within the ovary, such as folliculogenesis, ovulation, and luteal formation are dependent upon adequate vascularization and anything that disrupts normal angiogenic processes may result in ovarian dysfunction, and possibly infertility. The objective of this study was to evaluate the role of the thrombospondin-1 (TSP-1) receptor CD36 in mediating ovarian angiogenesis and regulating ovarian function. METHODS: The role of CD36 was evaluated in granulosa cells in vitro and ovarian morphology and protein expression were determined in wild type and CD36 null mice. RESULTS: In vitro, CD36 inhibition increased granulosa cell proliferation and decreased apoptosis. Granulosa cells in which CD36 was knocked down also exhibited an increase in expression of survival and angiogenic proteins. Ovaries from CD36 null mice were hypervascularized, with increased expression of pro-angiogenic vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Ovaries from CD36 null mice contained an increase in the numbers of pre-ovulatory follicles and decreased numbers of corpora lutea. CD36 null mice also had fewer number of offspring compared to wild type controls. CONCLUSIONS: The results from this study demonstrate that CD36 is integral to the regulation of ovarian angiogenesis by TSP-1 and the expression of these family members may be useful in the control of ovarian vascular disorders.


Assuntos
Antígenos CD36/fisiologia , Neovascularização Fisiológica/fisiologia , Folículo Ovariano/fisiologia , Indutores da Angiogênese/metabolismo , Animais , Linhagem Celular Transformada , Proliferação de Células , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Folículo Ovariano/citologia , Ratos
3.
Oncotarget ; 7(30): 47343-47365, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27329838

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer and often is not detected until late stages when cancer cells transcoelomically metastasize to the abdomen and typically become resistant to therapy resulting in very low survival rates. We utilize an orthotopic, syngeneic mouse model to study late stage disease and have discovered that the tumor cells within the abdominal ascites are irreversibly re-programmed, with an increased tumorigenicity and resistance to apoptosis. The goal of this study was to characterize the reprogramming that occurred in the aggressive ascites-derived cells (28-2 cells) compared to the original cell line used for tumor induction (ID8 cells). Microarray experiments showed that the majority of genes upregulated in the 28-2 cells belonged to the mevalonate pathway, which is involved in cholesterol biosynthesis, protein prenylation, and activation of small GTPases. Upregulation of mevalonate appeared to be associated with the acquisition of a p53 mutation in the ascites-derived cells. Treatment with simvastatin to inhibit HMG CoA reductase, the rate limiting enzyme of this pathway, induced apoptosis in the 28-2 cell line. Rescue experiments revealed that mevalonate, but not cholesterol, could inhibit the simvastatin-mediated effects. In vivo, daily intraperitoneal simvastatin treatment significantly regressed advanced stage disease and induced death of metastatic tumor cells. These data suggest that ovarian cancer cells become reprogrammed, with genetic mutations, and upregulation of the mevalonate pathway, which facilitates the development of advanced stage disease. The use of statins to inhibit HMGCR may provide novel therapeutic opportunities for the treatment of advanced stage EOC.


Assuntos
Ácido Mevalônico/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Instabilidade Genômica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa