Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(2): e0096622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695584

RESUMO

Combination therapy with ampicillin plus ceftriaxone (AMP+CRO) is the first-line therapy for treating severe infections due to Enterococcus faecalis. However, the pharmacokinetic/pharmacodynamic (PK/PD) index linked to the in vivo efficacy of the combination is not yet defined, hindering dose optimization in the clinic. Because classical PK/PD indices are not directly applicable to antimicrobial combinations, two novel indices were tested in the optimized murine model of infection by E. faecalis to delineate the potentiation of AMP by CRO: the time above the CRO threshold (T>threshold) and the time above the AMP instantaneous MIC (T>MICi). The potential clinical relevance was evaluated by simulating human doses of AMP and CRO. Hill's equation fitted well the exposure-response data in terms of T>threshold, with a CRO threshold of 1 mg/L. The required exposures were 46%, 49%, and 52% for stasis and 1- and 2-log10 killing, respectively. Human ceftriaxone doses of 2 g every 12 h (q12h) would reach the target in >90% of strains with thresholds ≤64 mg/L. The AMP T>MICi index also fitted well, and the required exposures were 37%, 41%, and 46% for stasis and 1- and 2-log10 killing, respectively. In humans, the addition of CRO would allow use of lower AMP doses to reach the same T>MICi and to treat strains with higher MICs. This is the first report of the PK/PD indices and required magnitudes linked to AMP+CRO against E. faecalis; these results can be used as the basis to guide the design of clinical trials to improve combined therapy against enterococci.


Assuntos
Antibacterianos , Ceftriaxona , Humanos , Camundongos , Animais , Ceftriaxona/uso terapêutico , Antibacterianos/uso terapêutico , Enterococcus faecalis , Ampicilina/uso terapêutico , Testes de Sensibilidade Microbiana , Mitomicina
2.
Ther Drug Monit ; 43(1): 108-115, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956238

RESUMO

BACKGROUND: Tuberculosis (TB) remains one of the most important infectious diseases. Population pharmacokinetic (pop-PK) models are widely used to individualize dosing regimens of several antibiotics, but their application in anti-TB drug studies is scant. The aim of this study was to provide an insight regarding the status of pop-PK for these drugs and to compare results obtained through both parametric and nonparametric approaches to design precise dosage regimens. METHODS: First, a systematic approach was implemented, searching in PubMed and Google Scholar. Articles that did not include human patients, that lacked an explicit structural model, that analyzed drugs inactive against M. tuberculosis, or were without full-text access, were excluded. Second, the PK parameters were summarized and categorized as parametric versus nonparametric results. Third, a Monte Carlo simulation was performed in Pmetrics using the results of both groups, and an error term was built to describe the imprecision of each PK modeling approach. RESULTS: Thirty-three articles reporting at least 1 pop-PK model of 19 anti-TB drug were found; 46 different models including PK parameter estimates and their relevant covariates were also reported. Only 9 models were based on nonparametric approaches. Rifampin was the drug most studied, but only using parametric approaches. The simulations showed that nonparametric approaches improve the error term compared with parametric approaches. CONCLUSIONS: More and better models, ideally using nonparametric approaches linked with clear pharmacodynamic goals, are required to optimize anti-TB drug dosing, as recommended in the WHO End TB strategy.


Assuntos
Antituberculosos/farmacocinética , Tuberculose , Simulação por Computador , Humanos , Modelos Biológicos , Mycobacterium tuberculosis , Tuberculose/tratamento farmacológico
3.
PLoS One ; 15(12): e0243365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33290425

RESUMO

The combination of ampicillin (AMP) and ceftriaxone (CRO) is considered synergistic against Enterococcus faecalis based on in vitro tests and the rabbit endocarditis model, however, in vitro assays are limited by the use of fixed antibiotic concentrations and the rabbit model by poor bacterial growth, high variability, and the use of point dose-effect estimations, that may lead to inaccurate assessment of antibiotic combinations and hinder optimal translation. Here, we tested AMP+CRO against two strains of E. faecalis and one of E. faecium in an optimized mouse thigh infection model that yields high bacterial growth and allows to define the complete dose-response relationship. By fitting Hill's sigmoid model and estimating the parameters maximal effect (Emax) and effective dose 50 (ED50), the following interactions were defined: synergism (Emax increase ≥2 log10 CFU/g), antagonism (Emax reduction ≥1 log10 CFU/g) and potentiation (ED50 reduction ≥50% without changes in Emax). AMP monotherapy was effective against the three strains, yielding valid dose-response curves in terms of dose and the index fT>MIC. CRO monotherapy showed no effect. The combination AMP+CRO against E. faecalis led to potentiation (59-81% ED50 reduction) and not synergism (no changes in Emax). Against E. faecium, the combination was indifferent. The optimized mouse infection model allowed to obtain the complete dose-response curve of AMP+CRO and to define its interaction based on pharmacodynamic parameter changes. Integrating these results with the pharmacokinetics will allow to derive the PK/PD index bound to the activity of the combination, essential for proper translation to the clinic.


Assuntos
Ampicilina , Ceftriaxona , Endocardite Bacteriana , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Infecções por Bactérias Gram-Positivas , Ampicilina/farmacocinética , Ampicilina/farmacologia , Animais , Ceftriaxona/farmacocinética , Ceftriaxona/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/metabolismo , Endocardite Bacteriana/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa