Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 20(4): 4369-75, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418195

RESUMO

We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.

2.
Opt Express ; 19(26): B537-42, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274067

RESUMO

We report on experimental demonstration of 2x2 MIMO-OFDM 5.6-GHz radio over fiber signaling over 20 km WDM-PON with directly modulated (DM) VCSELs for femtocells application. MIMO-OFDM algorithms effectively compensate for impairments in the wireless link. Error-free signal demodulation of 64 subcarrier 4-QAM signals modulated at 198.5 Mb/s net data rate is achieved after fiber and 2 m indoor wireless transmission. We report BER of 7x10(-3) at the receiver for 16-QAM signals modulated at 397 Mb/s after 1 m of wireless transmission. Performance dependence on different wireless transmission path lengths, antenna separation, and number of subcarriers have been investigated.

3.
J Biomater Sci Polym Ed ; 29(4): 376-396, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29285989

RESUMO

Addressing the functional biomaterials as next-generation therapeutics, chitosan and alginic acid were copolymerized in the form of chemically crosslinked interpenetrating networks (IPNs). The native hydrogel was functionalized via carbodiimide (EDC), catalyzed coupling of soft ligand (1,2-Ethylenediamine) and hard ligand (4-aminophenol) to replace -OH groups in alginic acid units for extended hydrogel- interfaces with the aqueous and sparingly soluble drug solutions. The chemical structure, Lower solution critical temperature (LCST ≈ 37.88 °C), particle size (Zh,app ≈ 150-200 nm), grain size (160-360 nm), surface roughness (85-250 nm), conductivity (37-74 mv) and zeta potential (16-32 mv) of native and functionalized hydrogel were investigated by using FT-IR, solid state-13C-NMR, TGA, DSC, FESEM, AFM and dynamic light scattering (DLS) measurements. The effective swelling, drug loading (47-78%) and drug release (53-86%) profiles were adjusted based on selective functionalization of hydrophobic IPNs due to electrostatic complexation and extended interactions of hydrophilic ligands with the aqueous and drug solutions. Drug release from the hydrogel matrices with diffusion coefficient n ≈ 0.7 was established by Non- Fickian diffusion mechanism. In vitro degradation trials of the hydrogel with a 20% loss of wet mass in simulated gastric fluid (SGF) and 38% loss of wet mass in simulated intestinal fluid (SIF), were investigated for 400 h through bulk erosion. Consequently, a slower rate of drug loading and release was observed for native hydrogel, due to stronger H-bonding, interlocking and entanglement within the IPNs, which was finely tuned and extended by the induced hydrophilic and functional ligands. In the light of induced hydrophilicity, such functional hydrogel could be highly attractive for extended release of sparingly soluble drugs.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Hidrogéis/química , Ácido Algínico/química , Aminofenóis/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Etilenodiaminas/química , Humanos , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Imidas/química , Polimerização
4.
Int J Biol Macromol ; 108: 367-375, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29222015

RESUMO

In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.


Assuntos
Técnicas de Química Sintética , Quitosana/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Temperatura , Resinas Acrílicas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Hidrogéis/síntese química , Metacrilatos/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa