Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Lancet ; 403(10424): 365-378, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38224710

RESUMO

BACKGROUND: The efficacy of daily co-trimoxazole, an antifolate used for malaria chemoprevention in pregnant women living with HIV, is threatened by cross-resistance of Plasmodium falciparum to the antifolate sulfadoxine-pyrimethamine. We assessed whether addition of monthly dihydroartemisinin-piperaquine to daily co-trimoxazole is more effective at preventing malaria infection than monthly placebo plus daily co-trimoxazole in pregnant women living with HIV. METHODS: We did an individually randomised, two-arm, placebo-controlled trial in areas with high-grade sulfadoxine-pyrimethamine resistance in Kenya and Malawi. Pregnant women living with HIV on dolutegravir-based combination antiretroviral therapy (cART) who had singleton pregnancies between 16 weeks' and 28 weeks' gestation were randomly assigned (1:1) by computer-generated block randomisation, stratified by site and HIV status (known positive vs newly diagnosed), to daily co-trimoxazole plus monthly dihydroartemisinin-piperaquine (three tablets of 40 mg dihydroartemisinin and 320 mg piperaquine given daily for 3 days) or daily co-trimoxazole plus monthly placebo. Daily co-trimoxazole consisted of one tablet of 160 mg sulfamethoxazole and 800 mg trimethoprim. The primary endpoint was the incidence of Plasmodium infection detected in the peripheral (maternal) or placental (maternal) blood or tissue by PCR, microscopy, rapid diagnostic test, or placental histology (active infection) from 2 weeks after the first dose of dihydroartemisinin-piperaquine or placebo to delivery. Log-binomial regression was used for binary outcomes, and Poisson regression for count outcomes. The primary analysis was by modified intention to treat, consisting of all randomised eligible participants with primary endpoint data. The safety analysis included all women who received at least one dose of study drug. All investigators, laboratory staff, data analysts, and participants were masked to treatment assignment. This trial is registered with ClinicalTrials.gov, NCT04158713. FINDINGS: From Nov 11, 2019, to Aug 3, 2021, 904 women were enrolled and randomly assigned to co-trimoxazole plus dihydroartemisinin-piperaquine (n=448) or co-trimoxazole plus placebo (n=456), of whom 895 (99%) contributed to the primary analysis (co-trimoxazole plus dihydroartemisinin-piperaquine, n=443; co-trimoxazole plus placebo, n=452). The cumulative risk of any malaria infection during pregnancy or delivery was lower in the co-trimoxazole plus dihydroartemisinin-piperaquine group than in the co-trimoxazole plus placebo group (31 [7%] of 443 women vs 70 [15%] of 452 women, risk ratio 0·45, 95% CI 0·30-0·67; p=0·0001). The incidence of any malaria infection during pregnancy or delivery was 25·4 per 100 person-years in the co-trimoxazole plus dihydroartemisinin-piperaquine group versus 77·3 per 100 person-years in the co-trimoxazole plus placebo group (incidence rate ratio 0·32, 95% CI 0·22-0·47, p<0·0001). The number needed to treat to avert one malaria infection per pregnancy was 7 (95% CI 5-10). The incidence of serious adverse events was similar between groups in mothers (17·7 per 100 person-years in the co-trimoxazole plus dihydroartemisinin-piperaquine group [23 events] vs 17·8 per 100 person-years in the co-trimoxazole group [25 events]) and infants (45·4 per 100 person-years [23 events] vs 40·2 per 100 person-years [21 events]). Nausea within the first 4 days after the start of treatment was reported by 29 (7%) of 446 women in the co-trimoxazole plus dihydroartemisinin-piperaquine group versus 12 (3%) of 445 women in the co-trimoxazole plus placebo group. The risk of adverse pregnancy outcomes did not differ between groups. INTERPRETATION: Addition of monthly intermittent preventive treatment with dihydroartemisinin-piperaquine to the standard of care with daily unsupervised co-trimoxazole in areas of high antifolate resistance substantially improves malaria chemoprevention in pregnant women living with HIV on dolutegravir-based cART and should be considered for policy. FUNDING: European and Developing Countries Clinical Trials Partnership 2; UK Joint Global Health Trials Scheme (UK Foreign, Commonwealth and Development Office; Medical Research Council; National Institute for Health Research; Wellcome); and Swedish International Development Cooperation Agency.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Infecções por HIV , Malária , Piperazinas , Quinolinas , Feminino , Humanos , Lactente , Gravidez , Antimaláricos/efeitos adversos , Quimioprevenção , Antagonistas do Ácido Fólico/uso terapêutico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malaui/epidemiologia , Placenta , Resultado da Gravidez , Gestantes , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Método Duplo-Cego
2.
J Infect Dis ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438123

RESUMO

BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply.

3.
Lancet ; 401(10381): 1020-1036, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36913959

RESUMO

BACKGROUND: Intermittent preventive treatment in pregnancy (IPTp) with dihydroartemisinin-piperaquine is more effective than IPTp with sulfadoxine-pyrimethamine at reducing malaria infection during pregnancy in areas with high-grade resistance to sulfadoxine-pyrimethamine by Plasmodium falciparum in east Africa. We aimed to assess whether IPTp with dihydroartemisinin-piperaquine, alone or combined with azithromycin, can reduce adverse pregnancy outcomes compared with IPTp with sulfadoxine-pyrimethamine. METHODS: We did an individually randomised, double-blind, three-arm, partly placebo-controlled trial in areas of high sulfadoxine-pyrimethamine resistance in Kenya, Malawi, and Tanzania. HIV-negative women with a viable singleton pregnancy were randomly assigned (1:1:1) by computer-generated block randomisation, stratified by site and gravidity, to receive monthly IPTp with sulfadoxine-pyrimethamine (500 mg of sulfadoxine and 25 mg of pyrimethamine for 1 day), monthly IPTp with dihydroartemisinin-piperaquine (dosed by weight; three to five tablets containing 40 mg of dihydroartemisinin and 320 mg of piperaquine once daily for 3 consecutive days) plus a single treatment course of placebo, or monthly IPTp with dihydroartemisinin-piperaquine plus a single treatment course of azithromycin (two tablets containing 500 mg once daily for 2 consecutive days). Outcome assessors in the delivery units were masked to treatment group. The composite primary endpoint was adverse pregnancy outcome, defined as fetal loss, adverse newborn baby outcomes (small for gestational age, low birthweight, or preterm), or neonatal death. The primary analysis was by modified intention to treat, consisting of all randomised participants with primary endpoint data. Women who received at least one dose of study drug were included in the safety analyses. This trial is registered with ClinicalTrials.gov, NCT03208179. FINDINGS: From March-29, 2018, to July 5, 2019, 4680 women (mean age 25·0 years [SD 6·0]) were enrolled and randomly assigned: 1561 (33%; mean age 24·9 years [SD 6·1]) to the sulfadoxine-pyrimethamine group, 1561 (33%; mean age 25·1 years [6·1]) to the dihydroartemisinin-piperaquine group, and 1558 (33%; mean age 24·9 years [6.0]) to the dihydroartemisinin-piperaquine plus azithromycin group. Compared with 335 (23·3%) of 1435 women in the sulfadoxine-pyrimethamine group, the primary composite endpoint of adverse pregnancy outcomes was reported more frequently in the dihydroartemisinin-piperaquine group (403 [27·9%] of 1442; risk ratio 1·20, 95% CI 1·06-1·36; p=0·0040) and in the dihydroartemisinin-piperaquine plus azithromycin group (396 [27·6%] of 1433; 1·16, 1·03-1·32; p=0·017). The incidence of serious adverse events was similar in mothers (sulfadoxine-pyrimethamine group 17·7 per 100 person-years, dihydroartemisinin-piperaquine group 14·8 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 16·9 per 100 person-years) and infants (sulfadoxine-pyrimethamine group 49·2 per 100 person-years, dihydroartemisinin-piperaquine group 42·4 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 47·8 per 100 person-years) across treatment groups. 12 (0·2%) of 6685 sulfadoxine-pyrimethamine, 19 (0·3%) of 7014 dihydroartemisinin-piperaquine, and 23 (0·3%) of 6849 dihydroartemisinin-piperaquine plus azithromycin treatment courses were vomited within 30 min. INTERPRETATION: Monthly IPTp with dihydroartemisinin-piperaquine did not improve pregnancy outcomes, and the addition of a single course of azithromycin did not enhance the effect of monthly IPTp with dihydroartemisinin-piperaquine. Trials that combine sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine for IPTp should be considered. FUNDING: European & Developing Countries Clinical Trials Partnership 2, supported by the EU, and the UK Joint-Global-Health-Trials-Scheme of the Foreign, Commonwealth and Development Office, Medical Research Council, Department of Health and Social Care, Wellcome, and the Bill-&-Melinda-Gates-Foundation.


Assuntos
Antimaláricos , Complicações Parasitárias na Gravidez , Quinolinas , Recém-Nascido , Gravidez , Feminino , Humanos , Adulto , Adulto Jovem , Pirimetamina/efeitos adversos , Sulfadoxina/efeitos adversos , Resultado da Gravidez , Antimaláricos/efeitos adversos , Azitromicina/efeitos adversos , Complicações Parasitárias na Gravidez/tratamento farmacológico , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/epidemiologia , Combinação de Medicamentos , Quênia , Tanzânia
4.
N Engl J Med ; 383(23): 2242-2254, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264546

RESUMO

BACKGROUND: Children who have been hospitalized with severe anemia in areas of Africa in which malaria is endemic have a high risk of readmission and death within 6 months after discharge. No prevention strategy specifically addresses this period. METHODS: We conducted a multicenter, two-group, randomized, placebo-controlled trial in nine hospitals in Kenya and Uganda to determine whether 3 months of malaria chemoprevention could reduce morbidity and mortality after hospital discharge in children younger than 5 years of age who had been admitted with severe anemia. All children received standard in-hospital care for severe anemia and a 3-day course of artemether-lumefantrine at discharge. Two weeks after discharge, children were randomly assigned to receive dihydroartemisinin-piperaquine (chemoprevention group) or placebo, administered as 3-day courses at 2, 6, and 10 weeks after discharge. Children were followed for 26 weeks after discharge. The primary outcome was one or more hospital readmissions for any reason or death from the time of randomization to 6 months after discharge. Conditional risk-set modeling for recurrent events was used to calculate hazard ratios with the use of the Prentice-Williams-Peterson total-time approach. RESULTS: From May 2016 through May 2018, a total of 1049 children underwent randomization; 524 were assigned to the chemoprevention group and 525 to the placebo group. From week 3 through week 26, a total of 184 events of readmission or death occurred in the chemoprevention group and 316 occurred in the placebo group (hazard ratio, 0.65; 95% confidence interval [CI], 0.54 to 0.78; P<0.001). The lower incidence of readmission or death in the chemoprevention group than in the placebo group was restricted to the intervention period (week 3 through week 14) (hazard ratio, 0.30; 95% CI, 0.22 to 0.42) and was not sustained after that time (week 15 through week 26) (hazard ratio, 1.13; 95% CI, 0.87 to 1.47). No serious adverse events were attributed to dihydroartemisinin-piperaquine. CONCLUSIONS: In areas with intense malaria transmission, 3 months of postdischarge malaria chemoprevention with monthly dihydroartemisinin-piperaquine in children who had recently received treatment for severe anemia prevented more deaths or readmissions for any reason after discharge than placebo. (Funded by the Research Council of Norway and the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT02671175.).


Assuntos
Anemia/tratamento farmacológico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/prevenção & controle , Quinolinas/uso terapêutico , Assistência ao Convalescente , Pré-Escolar , Combinação de Medicamentos , Doenças Endêmicas , Feminino , Humanos , Lactente , Quênia/epidemiologia , Malária/epidemiologia , Masculino , Readmissão do Paciente/estatística & dados numéricos , Uganda/epidemiologia
5.
J Infect Dis ; 226(4): 696-707, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35811308

RESUMO

BACKGROUND: Screen-and-treat strategies with sensitive diagnostic tests may reduce malaria-associated adverse pregnancy outcomes. We conducted a diagnostic accuracy study to evaluate new point-of-care tests to screen pregnant women for malaria at their first antenatal visit in western Kenya. METHODS: Consecutively women were tested for Plasmodium infection by expert microscopy, conventional rapid diagnostic test (cRDT), ultra sensitive RDT (usRDT), and loop-mediated isothermal amplification (LAMP). Photoinduced electron-transfer polymerase chain reaction (PET-PCR) served as the reference standard. Diagnostic performance was calculated and modelled at low parasite densities. RESULTS: Between May and September 2018, 172 of 482 screened participants (35.7%) were PET-PCR positive. Relative to PET-PCR, expert microscopy was least sensitive (40.1%; 95% confidence interval [CI], 32.7%-47.9%), followed by cRDT (49.4%; 95% CI, 41.7%-57.1), usRDT (54.7%; 95% CI, 46.9%-62.2%), and LAMP (68.6%; 95% CI, 61.1%-75.5%). Test sensitivities were comparable in febrile women (n = 90). Among afebrile women (n = 392), the geometric-mean parasite density was 29 parasites/µL and LAMP (sensitivity = 61.9%) and usRDT (43.2%) detected 1.74 (95% CI, 1.31-2.30) and 1.21 (95% CI, 88-2.21) more infections than cRDT (35.6%). Per our model, tests performed similarly at densities >200 parasites/µL. At 50 parasites/µL, the sensitivities were 45%, 56%, 62%, and 74% with expert microscopy, cRDT, usRDT, and LAMP, respectively. CONCLUSIONS: This first-generation usRDT provided moderate improvement in detecting low-density infections in afebrile pregnant women compared to cRDTs.


Assuntos
Malária Falciparum , Malária , Testes Diagnósticos de Rotina , Feminino , Humanos , Quênia , Malária/diagnóstico , Malária Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/genética , Gravidez , Gestantes , Sensibilidade e Especificidade
6.
Antimicrob Agents Chemother ; 66(9): e0020722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36036611

RESUMO

Antimalarial resistance threatens global malaria control efforts. The World Health Organization (WHO) recommends routine antimalarial efficacy monitoring through a standardized therapeutic efficacy study (TES) protocol. From June 2016 to March 2017, children with uncomplicated P. falciparum mono-infection in Siaya County, Kenya were enrolled into a standardized TES and randomized (1:1 ratio) to a 3-day course of artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP). Efficacy outcomes were measured at 28 and 42 days. A total of 340 children were enrolled. All but one child cleared parasites by day 3. PCR-corrected adequate clinical and parasitological response (ACPR) was 88.5% (95% CI: 80.9 to 93.3%) at day 28 for AL and 93.0% (95% CI: 86.9 to 96.4%) at day 42 for DP. There were 9.6 times (95% CI: 3.4 to 27.2) more reinfections in the AL arm compared to the DP arm at day 28, and 3.1 times (95% CI: 1.9 to 4.9) more reinfections at day 42. Both AL and DP were efficacious (per WHO 90% cutoff in the confidence interval) and well tolerated for the treatment of uncomplicated malaria in western Kenya, but AL efficacy appears to be waning. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Quinolinas , Antimaláricos/efeitos adversos , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/efeitos adversos , Criança , Combinação de Medicamentos , Etanolaminas/efeitos adversos , Etanolaminas/uso terapêutico , Fluorenos/efeitos adversos , Fluorenos/uso terapêutico , Humanos , Lactente , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Piperazinas , Plasmodium falciparum , Quinolinas/efeitos adversos , Reinfecção
7.
Malar J ; 21(1): 319, 2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336700

RESUMO

BACKGROUND: Detection of malaria parasitaemia in samples that are negative by rapid diagnostic tests (RDTs) requires resource-intensive molecular tools. While pooled testing using a two-step strategy provides a cost-saving alternative to the gold standard of individual sample testing, statistical adjustments are needed to improve accuracy of prevalence estimates for a single step pooled testing strategy. METHODS: A random sample of 4670 malaria RDT negative dried blood spot samples were selected from a mass testing and treatment trial in Asembo, Gem, and Karemo, western Kenya. Samples were tested for malaria individually and in pools of five, 934 pools, by one-step quantitative polymerase chain reaction (qPCR). Maximum likelihood approaches were used to estimate subpatent parasitaemia (RDT-negative, qPCR-positive) prevalence by pooling, assuming poolwise sensitivity and specificity was either 100% (strategy A) or imperfect (strategy B). To improve and illustrate the practicality of this estimation approach, a validation study was constructed from pools allocated at random into main (734 pools) and validation (200 pools) subsets. Prevalence was estimated using strategies A and B and an inverse-variance weighted estimator and estimates were weighted to account for differential sampling rates by area. RESULTS: The prevalence of subpatent parasitaemia was 14.5% (95% CI 13.6-15.3%) by individual qPCR, 9.5% (95% CI (8.5-10.5%) by strategy A, and 13.9% (95% CI 12.6-15.2%) by strategy B. In the validation study, the prevalence by individual qPCR was 13.5% (95% CI 12.4-14.7%) in the main subset, 8.9% (95% CI 7.9-9.9%) by strategy A, 11.4% (95% CI 9.9-12.9%) by strategy B, and 12.8% (95% CI 11.2-14.3%) using inverse-variance weighted estimator from poolwise validation. Pooling, including a 20% validation subset, reduced costs by 52% compared to individual testing. CONCLUSIONS: Compared to individual testing, a one-step pooled testing strategy with an internal validation subset can provide accurate prevalence estimates of PCR-positivity among RDT-negatives at a lower cost.


Assuntos
Malária Falciparum , Malária , Humanos , Testes Diagnósticos de Rotina , Quênia/epidemiologia , Funções Verossimilhança , Malária/diagnóstico , Malária/epidemiologia , Malária Falciparum/epidemiologia , Técnicas de Diagnóstico Molecular , Parasitemia/diagnóstico , Parasitemia/epidemiologia , Prevalência , Sensibilidade e Especificidade , Ensaios Clínicos como Assunto
8.
Malar J ; 21(1): 265, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100912

RESUMO

BACKGROUND: Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS: Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS: The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION: This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Biomarcadores , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Humanos , Quênia/epidemiologia , Malária Falciparum/parasitologia , Mosquitos Vetores , Oocistos , Plasmodium falciparum/genética , Tetra-Hidrofolato Desidrogenase/genética
9.
Clin Infect Dis ; 72(11): 1927-1935, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324850

RESUMO

BACKGROUND: Global gains toward malaria elimination have been heterogeneous and have recently stalled. Interventions targeting afebrile malaria infections may be needed to address residual transmission. We studied the efficacy of repeated rounds of community-based mass testing and treatment (MTaT) on malaria infection prevalence in western Kenya. METHODS: Twenty clusters were randomly assigned to 3 rounds of MTaT per year for 2 years or control (standard of care for testing and treatment at public health facilities along with government-sponsored mass long-lasting insecticidal net [LLIN] distributions). During rounds, community health volunteers visited all households in intervention clusters and tested all consenting individuals with a rapid diagnostic test. Those positive were treated with dihydroartemisinin-piperaquine. Cross-sectional community infection prevalence surveys were performed in both study arms at baseline and each year after 3 rounds of MTaT. The primary outcome was the effect size of MTaT on parasite prevalence by microscopy between arms by year, adjusted for age, reported LLIN use, enhanced vegetative index, and socioeconomic status. RESULTS: Demographic and behavioral characteristics, including LLIN usage, were similar between arms at each survey. MTaT coverage across the 3 annual rounds ranged between 75.0% and 77.5% in year 1, and between 81.9% and 94.3% in year 2. The adjusted effect size of MTaT on the prevalence of parasitemia between arms was 0.93 (95% confidence interval [CI], .79-1.08) and 0.92 (95% CI, .76-1.10) after year 1 and year 2, respectively. CONCLUSIONS: MTaT performed 3 times per year over 2 years did not reduce malaria parasite prevalence in this high-transmission area. CLINICAL TRIALS REGISTRATION: NCT02987270.


Assuntos
Malária , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Prevalência
10.
Artigo em Inglês | MEDLINE | ID: mdl-33361303

RESUMO

Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.).


Assuntos
Antimaláricos , Malária Falciparum , Malária , Complicações Parasitárias na Gravidez , Quinolinas , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Indonésia , Quênia , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Complicações Parasitárias na Gravidez/prevenção & controle , Quinolinas/uso terapêutico
11.
Malar J ; 20(1): 92, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593329

RESUMO

BACKGROUND: Simultaneous infection with multiple malaria parasite strains is common in high transmission areas. Quantifying the number of strains per host, or the multiplicity of infection (MOI), provides additional parasite indices for assessing transmission levels but it is challenging to measure accurately with current tools. This paper presents new laboratory and analytical methods for estimating the MOI of Plasmodium falciparum. METHODS: Based on 24 single nucleotide polymorphisms (SNPs) previously identified as stable, unlinked targets across 12 of the 14 chromosomes within P. falciparum genome, three multiplex PCRs of short target regions and subsequent next generation sequencing (NGS) of the amplicons were developed. A bioinformatics pipeline including B4Screening pathway removed spurious amplicons to ensure consistent frequency calls at each SNP location, compiled amplicons by SNP site diversity, and performed algorithmic haplotype and strain reconstruction. The pipeline was validated by 108 samples generated from cultured-laboratory strain mixtures in different proportions and concentrations, with and without pre-amplification, and using whole blood and dried blood spots (DBS). The pipeline was applied to 273 smear-positive samples from surveys conducted in western Kenya, then providing results into StrainRecon Thresholding for Infection Multiplicity (STIM), a novel MOI estimator. RESULTS: The 24 barcode SNPs were successfully identified uniformly across the 12 chromosomes of P. falciparum in a sample using the pipeline. Pre-amplification and parasite concentration, while non-linearly associated with SNP read depth, did not influence the SNP frequency calls. Based on consistent SNP frequency calls at targeted locations, the algorithmic strain reconstruction for each laboratory-mixed sample had 98.5% accuracy in dominant strains. STIM detected up to 5 strains in field samples from western Kenya and showed declining MOI over time (q < 0.02), from 4.32 strains per infected person in 1996 to 4.01, 3.56 and 3.35 in 2001, 2007 and 2012, and a reduction in the proportion of samples with 5 strains from 57% in 1996 to 18% in 2012. CONCLUSION: The combined approach of new multiplex PCRs and NGS, the unique bioinformatics pipeline and STIM could identify 24 barcode SNPs of P. falciparum correctly and consistently. The methodology could be applied to field samples to reliably measure temporal changes in MOI.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Malária Falciparum/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium falciparum/isolamento & purificação , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação
12.
Clin Infect Dis ; 71(4): 1063-1071, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31555824

RESUMO

BACKGROUND: The whole Plasmodium falciparum sporozoite (PfSPZ) vaccine is being evaluated for malaria prevention. The vaccine is administered intravenously for maximal efficacy. Direct venous inoculation (DVI) with PfSPZ vaccine has been safe, tolerable, and feasible in adults, but safety data for children and infants are limited. METHODS: We conducted an age de-escalation, dose-escalation randomized controlled trial in Siaya County, western Kenya. Children and infants (aged 5-9 years, 13-59 months, and 5-12 months) were enrolled into 13 age-dose cohorts of 12 participants and randomized 2:1 to vaccine or normal saline placebo in escalating doses: 1.35 × 105, 2.7 × 105, 4.5 × 105, 9.0 × 105, and 1.8 × 106 PfSPZ, with the 2 highest doses given twice, 8 weeks apart. Solicited adverse events (AEs) were monitored for 8 days after vaccination, unsolicited AEs for 29 days, and serious AEs throughout the study. Blood taken prevaccination and 1 week postvaccination was tested for immunoglobulin G antibodies to P. falciparum circumsporozoite protein (PfCSP) using enzyme-linked immunosorbent assay. RESULTS: Rates of AEs were similar in vaccinees and controls for solicited (35.7% vs 41.5%) and unsolicited (83.9% vs 92.5%) AEs, respectively. No related grade 3 AEs, serious AEs, or grade 3 laboratory abnormalities occurred. Most (79.0%) vaccinations were administered by a single DVI. Among those in the 9.0 × 105 and 1.8 × 106 PfSPZ groups, 36 of 45 (80.0%) vaccinees and 4 of 21 (19.0%) placebo controls developed antibodies to PfCSP (P < .001). CONCLUSIONS: PfSPZ vaccine in doses as high as 1.8 × 106 can be administered to infants and children by DVI, and was safe, well tolerated, and immunogenic. CLINICAL TRIALS REGISTRATION: NCT02687373.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Lactente , Quênia , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Vacinação
13.
Malar J ; 19(1): 329, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907582

RESUMO

BACKGROUND: Prompt diagnosis and effective malaria treatment is a key strategy in malaria control. However, the recommended diagnostic methods, microscopy and rapid diagnostic tests (RDTs), are not supported by robust quality assurance systems in endemic areas. This study compared the performance of routine RDTs and smear microscopy with a simple molecular-based colorimetric loop-mediated isothermal amplification (LAMP) at two different levels of the health care system in a malaria-endemic area of western Kenya. METHODS: Patients presenting with clinical symptoms of malaria at Rota Dispensary (level 2) and Siaya County Referral Hospital (level 4) were enrolled into the study after obtaining written informed consent. Capillary blood was collected to test for malaria by RDT and microscopy at the dispensary and county hospital, and for preparation of blood smears and dried blood spots (DBS) for expert microscopy and real-time polymerase chain reaction (RT-PCR). Results of the routine diagnostic tests were compared with those of malachite green loop-mediated isothermal amplification (MG-LAMP) performed at the two facilities. RESULTS: A total of 264 participants were enrolled into the study. At the dispensary level, the positivity rate by RDT, expert microscopy, MG-LAMP and RT-PCR was 37%, 30%, 44% and 42%, respectively, and 42%, 43%, 57% and 43% at the county hospital. Using RT-PCR as the reference test, the sensitivity of RDT and MG-LAMP was 78.1% (CI 67.5-86.4) and 82.9% (CI 73.0-90.3) at Rota dispensary. At Siaya hospital the sensitivity of routine microscopy and MG-LAMP was 83.3% (CI 65.3-94.4) and 93.3% (CI 77.9-99.2), respectively. Compared to MG-LAMP, there were 14 false positives and 29 false negatives by RDT at Rota dispensary and 3 false positives and 13 false negatives by routine microscopy at Siaya Hospital. CONCLUSION: MG-LAMP is more sensitive than RDTs and microscopy in the detection of malaria parasites at public health facilities and might be a useful quality control tool in resource-limited settings.


Assuntos
Colorimetria/métodos , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/isolamento & purificação , Humanos , Quênia , Corantes de Rosanilina/química
14.
Malar J ; 19(1): 291, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795367

RESUMO

BACKGROUND: Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS: Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS: No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION: The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/sangue , Biomarcadores/sangue , Pré-Escolar , Genes de Protozoários , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Prevalência
15.
Malar J ; 18(1): 247, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337411

RESUMO

BACKGROUND: Parasite prevalence has been used widely as a measure of malaria transmission, especially in malaria endemic areas. However, its contribution and relationship to malaria mortality across different age groups has not been well investigated. Previous studies in a health and demographic surveillance systems (HDSS) platform in western Kenya quantified the contribution of incidence and entomological inoculation rates (EIR) to mortality. The study assessed the relationship between outcomes of malaria parasitaemia surveys and mortality across age groups. METHODS: Parasitological data from annual cross-sectional surveys from the Kisumu HDSS between 2007 and 2015 were used to determine malaria parasite prevalence (PP) and clinical malaria (parasites plus reported fever within 24 h or temperature above 37.5 °C). Household surveys and verbal autopsy (VA) were used to obtain data on all-cause and malaria-specific mortality. Bayesian negative binomial geo-statistical regression models were used to investigate the association of PP/clinical malaria with mortality across different age groups. Estimates based on yearly data were compared with those from aggregated data over 4 to 5-year periods, which is the typical period that mortality data are available from national demographic and health surveys. RESULTS: Using 5-year aggregated data, associations were established between parasite prevalence and malaria-specific mortality in the whole population (RRmalaria = 1.66; 95% Bayesian Credible Intervals: 1.07-2.54) and children 1-4 years (RRmalaria = 2.29; 1.17-4.29). While clinical malaria was associated with both all-cause and malaria-specific mortality in combined ages (RRall-cause = 1.32; 1.01-1.74); (RRmalaria = 2.50; 1.27-4.81), children 1-4 years (RRall-cause = 1.89; 1.00-3.51); (RRmalaria = 3.37; 1.23-8.93) and in older children 5-14 years (RRall-cause = 3.94; 1.34-11.10); (RRmalaria = 7.56; 1.20-39.54), no association was found among neonates, adults (15-59 years) and the elderly (60+ years). Distance to health facilities, socioeconomic status, elevation and survey year were important factors for all-cause and malaria-specific mortality. CONCLUSION: Malaria parasitaemia from cross-sectional surveys was associated with mortality across age groups over 4 to 5 year periods with clinical malaria more strongly associated with mortality than parasite prevalence. This effect was stronger in children 5-14 years compared to other age-groups. Further analyses of data from other HDSS sites or similar platforms would be useful in investigating the relationship between malaria and mortality across different endemicity levels.


Assuntos
Malária/epidemiologia , Parasitemia/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Criança , Pré-Escolar , Estudos Transversais , Humanos , Incidência , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/mortalidade , Malária/transmissão , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
16.
Malar J ; 18(1): 255, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357997

RESUMO

BACKGROUND: Malaria transmission is high in western Kenya and the asymptomatic infected population plays a significant role in driving the transmission. Mathematical modelling and simulation programs suggest that interventions targeting asymptomatic infections through mass testing and treatment (MTaT) or mass drug administration (MDA) have the potential to reduce malaria transmission when combined with existing interventions. OBJECTIVE: This paper describes the study site, capacity development efforts required, and lessons learned for implementing a multi-year community-based cluster-randomized controlled trial to evaluate the impact of MTaT for malaria transmission reduction in an area of high transmission in western Kenya. METHODS: The study partnered with Kenya's Ministry of Health (MOH) and other organizations on community sensitization and engagement to mobilize, train and deploy community health volunteers (CHVs) to deliver MTaT in the community. Within the health facilities, the study availed staff, medical and laboratory supplies and strengthened health information management system to monitor progress and evaluate impact of intervention. RESULTS: More than 80 Kenya MOH CHVs, 13 clinical officers, field workers, data and logistical staff were trained to carry out MTaT three times a year for 2 years in a population of approximately 90,000 individuals. A supply chain management was adapted to meet daily demands for large volumes of commodities despite the limitation of few MOH facilities having ideal storage conditions. Modern technology was adapted more to meet the needs of the high daily volume of collected data. CONCLUSIONS: In resource-constrained settings, large interventions require capacity building and logistical planning. This study found that investing in relationships with the communities, local governments, and other partners, and identifying and equipping the appropriate staff with the skills and technology to perform tasks are important factors for success in delivering an intervention like MTaT.


Assuntos
Antimaláricos/uso terapêutico , Participação da Comunidade/métodos , Malária/prevenção & controle , Administração Massiva de Medicamentos/métodos , Programas de Rastreamento/métodos , Agentes Comunitários de Saúde/estatística & dados numéricos , Quênia , Voluntários/estatística & dados numéricos
17.
Malar J ; 16(1): 240, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592250

RESUMO

Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.


Assuntos
Antimaláricos/uso terapêutico , Malária/diagnóstico , Malária/tratamento farmacológico , Projetos de Pesquisa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Testes Diagnósticos de Rotina , Feminino , Humanos , Lactente , Quênia , Estudos Longitudinais , Malária/prevenção & controle , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
19.
Clin Infect Dis ; 62(3): 323-333, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26486699

RESUMO

BACKGROUND: Owing to increasing sulfadoxine-pyrimethamine (SP) resistance in sub-Saharan Africa, monitoring the effectiveness of intermittent preventive therapy in pregnancy (IPTp) with SP is crucial. METHODS: Between 2009 and 2013, both the efficacy of IPTp-SP at clearing existing peripheral malaria infections and the effectiveness of IPTp-SP at reducing low birth weight (LBW) were assessed among human immunodeficiency virus-uninfected participants in 8 sites in 6 countries. Sites were classified as high, medium, or low resistance after measuring parasite mutations conferring SP resistance. An individual-level prospective pooled analysis was conducted. RESULTS: Among 1222 parasitemic pregnant women, overall polymerase chain reaction-uncorrected and -corrected failure rates by day 42 were 21.3% and 10.0%, respectively (39.7% and 21.1% in high-resistance areas; 4.9% and 1.1% in low-resistance areas). Median time to recurrence decreased with increasing prevalence of Pfdhps-K540E. Among 6099 women at delivery, IPTp-SP was associated with a 22% reduction in the risk of LBW (prevalence ratio [PR], 0.78; 95% confidence interval [CI], .69-.88; P < .001). This association was not modified by insecticide-treated net use or gravidity, and remained significant in areas with high SP resistance (PR, 0.81; 95% CI, .67-.97; P = .02). CONCLUSIONS: The efficacy of SP to clear peripheral parasites and prevent new infections during pregnancy is compromised in areas with >90% prevalence of Pfdhps-K540E. Nevertheless, in these high-resistance areas, IPTp-SP use remains associated with increases in birth weight and maternal hemoglobin. The effectiveness of IPTp in eastern and southern Africa is threatened by further increases in SP resistance and reinforces the need to evaluate alternative drugs and strategies for the control of malaria in pregnancy.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Recém-Nascido de Baixo Peso , Malária/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Adulto , África Subsaariana/epidemiologia , Substituição de Aminoácidos , Antimaláricos/administração & dosagem , Di-Hidropteroato Sintase/genética , Combinação de Medicamentos , Tratamento Farmacológico/métodos , Feminino , Humanos , Recém-Nascido , Malária/complicações , Proteínas Mutantes/genética , Plasmodium falciparum/enzimologia , Gravidez , Estudos Prospectivos , Pirimetamina/administração & dosagem , Sulfadoxina/administração & dosagem , Resultado do Tratamento , Adulto Jovem
20.
Lancet ; 386(10012): 2507-19, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26429700

RESUMO

BACKGROUND: Every year, more than 32 million pregnancies in sub-Saharan Africa are at risk of malaria infection and its adverse consequences. The effectiveness of the intermittent preventive treatment with sulfadoxine-pyrimethamine strategy recommended by WHO is threatened by high levels of parasite resistance. We aimed to assess the efficacy and safety of two alternative strategies: intermittent screening with malaria rapid diagnostic tests and treatment of women who test positive with dihydroartemisinin-piperaquine, and intermittent preventive treatment with dihydroartemisinin-piperaquine. METHODS: We did this open-label, three-group, randomised controlled superiority trial at four sites in western Kenya with high malaria transmission and sulfadoxine-pyrimethamine resistance. HIV-negative pregnant women between 16 and 32 weeks' gestation were randomly assigned (1:1:1), via computer-generated permuted-block randomisation (block sizes of three, six, and nine), to receive intermittent screening and treatment with dihydroartemisinin-piperaquine, intermittent preventive treatment with dihydroartemisinin-piperaquine, or intermittent preventive treatment with sulfadoxine-pyrimethamine. Study participants, study clinic nurses, and the study coordinator were aware of treatment allocation, but allocation was concealed from study investigators, delivery unit nurses, and laboratory staff. The primary outcome was malaria infection at delivery, defined as a composite of peripheral or placental parasitaemia detected by placental histology, microscopy, or rapid diagnostic test. The primary analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01669941. FINDINGS: Between Aug 21, 2012, and June 19, 2014, we randomly assigned 1546 women to receive intermittent screening and treatment with dihydroartemisinin-piperaquine (n=515), intermittent preventive treatment with dihydroartemisinin-piperaquine (n=516), or intermittent preventive treatment with sulfadoxine-pyrimethamine (n=515); 1368 (88%) women comprised the intention-to-treat population for the primary endpoint. Prevalence of malaria infection at delivery was lower in the intermittent preventive treatment with dihydroartemisinin-piperaquine group than in the intermittent preventive treatment with sulfadoxine-pyrimethamine group (15 [3%] of 457 women vs 47 [10%] of 459 women; relative risk 0·32, 95% CI 0·18-0·56; p<0·0001), but not in the intermittent screening and treatment with dihydroartemisinin-piperaquine group (57 [13%] of 452 women; 1·23, 0·86-1·77; p=0·26). Compared with intermittent preventive treatment with sulfadoxine-pyrimethamine, intermittent preventive treatment with dihydroartemisinin-piperaquine was associated with a lower incidence of malaria infection during pregnancy (192·0 vs 54·4 events per 100 person-years; incidence rate ratio [IRR] 0·28, 95% CI 0·22-0·36; p<0·0001) and clinical malaria during pregnancy (37·9 vs 6·1 events; 0·16, 0·08-0·33; p<0·0001), whereas intermittent screening and treatment with dihydroartemisinin-piperaquine was associated with a higher incidence of malaria infection (232·0 events; 1·21, 1·03-1·41; p=0·0177) and clinical malaria (53·4 events; 1·41, 1·00-1·98; p=0·0475). We recorded 303 maternal and infant serious adverse events, which were least frequent in the intermittent preventive treatment with dihydroartemisinin-piperaquine group. INTERPRETATION: At current levels of rapid diagnostic test sensitivity, intermittent screening and treatment is not a suitable alternative to intermittent preventive treatment with sulfadoxine-pyrimethamine in the context of high sulfadoxine-pyrimethamine resistance and malaria transmission. However, dihydroartemisinin-piperaquine is a promising alternative drug to replace sulfadoxine-pyrimethamine for intermittent preventive treatment. Future studies should investigate the efficacy, safety, operational feasibility, and cost-effectiveness of intermittent preventive treatment with dihydroartemisinin-piperaquine. FUNDING: The Malaria in Pregnancy Consortium, which is funded through a grant from the Bill & Melinda Gates Foundation to the Liverpool School of Tropical Medicine.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Malária/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/administração & dosagem , Quinolinas/administração & dosagem , Sulfadoxina/administração & dosagem , Adolescente , Adulto , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Quênia , Malária/diagnóstico , Malária/tratamento farmacológico , Programas de Rastreamento/métodos , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Diagnóstico Pré-Natal/métodos , Fatores de Risco , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa