Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39057249

RESUMO

The bean leaf beetle (BLB) (Ootheca spp.) is a polyphagous pest causing significant yield losses in Uganda, particularly in the Northern and Eastern regions on various hosts plants. Despite its polyphagous behaviour, the BLB exhibits preferential feeding, offering an opportunity for targeted pest management. This study explored its feeding preferences across seven crops: common bean, cowpea, greengram, okra, roselle (malakwang), groundnuts, and soybean. This study was conducted in Arua and Lira districts using a randomized complete block design for two rainy seasons (2018A and 2018B). The results showed significant differences in BLB abundance and foliar damage among host crops, locations, days after planting and seasons. Cowpea was the most preferred crop while groundnuts was the least preferred. Therefore, cowpea can be recommended for use as a trap for managing Ootheca spp. in gardens where it is not the main crop. There was a higher pest abundance in Arua than in Lira. There was also a higher pest abundance in 2018A than in 2018B. These findings highlight the importance of understanding BLB's feeding preferences for implementing effective IPM strategies, emphasizing the potential role of trap cropping, especially with cowpea, to minimize BLB damage in resource-constrained agricultural settings.

2.
Insects ; 15(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786857

RESUMO

Spodoptera frugiperda (Lepidoptera: Noctuidae), commonly known as fall armyworm, was first detected in Uganda in 2016 and has spread to all the maize-growing districts. Different methods have been deployed to control this pest. However, there is a limited understanding of the role of the environment and farmers' practices on the abundance of and damage by S. frugiperda in Uganda. This study, therefore, assessed the abundance of S. frugiperda and leaf damage levels in three different districts and explored the association between agronomic practices, crop phenology, and weather parameters on S. frugiperda damage and abundance in smallholder farmers' maize fields using a longitudinal monitoring survey in 69 farmers' fields of Kole, Kiryandongo, and Nakaseke for three seasons. The numbers of egg masses and adults were generally low. The highest numbers of adults were trapped in Kiryandongo, followed by Nakaseke, and the lowest numbers were trapped in Kole. Leaf damage and incidence of damaged plants differed significantly between districts and seasons. Leaf damage and abundance of larvae varied significantly in the districts and at different growth stages. Conservation tillage, reduced weeding frequency, increased rainfall and high maximum temperatures were associated with reduced S. frugiperda damage. No significant relationship was observed between pesticide or cropping systems with S. frugiperda leaf damage. However, the influence of fertilizer use on leaf damage was contradictory across seasons and districts. Timely and vigilant scouting, proper timing of control measures, and minimum tillage practices should be included in an IPM strategy for S. frugiperda.

3.
Insects ; 14(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37887798

RESUMO

Surveys were conducted during 2020 and 2021 to study the emerging lepidopteran pests inflicting cereals in Tunisia, with specific emphasis on maize and sorghum crops. A species was collected from traps placed in the Jendouba, Bizerte, Nabeul and Gabes regions. Thus, this study carried out first report on its identification, distribution, population density and damage. Results showed that M. loreyi was abundant in all prospected areas, with total adult captures reaching 4779 and 9499 moths on sorghum and maize, respectively, during 2020. Moreover, the mean infestation percentage reached its maximum during August at 31.05% and 20.69% for the Jendouba and Bizerte regions, respectively, while the highest infestations were observed in the Gabes and Nabeul regions during July, with respective mean values of 13.54% and 21.35%. In addition, results revealed that the highest pest incidence occurred in the Gabes region, with values of 11.1 ± 0.47 and 5.7 ± 0.48 during 2020 and 2021, respectively. Additionally, results pointed out that M. loreyi achieved two summer generations in the different localities of Tunisia. Overall, this study provides basic insights into the ecology and population biology of M. loreyi, which are required to establish an effective pest control program.

4.
Insects ; 13(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36135549

RESUMO

Bean leaf beetles (BLBs) (Ootheca spp.) are serious legume pests in Uganda and sub-Saharan Africa, but their ecology is not well understood. We planted host plants, viz., common bean, cowpea, and soybean, in an experiment in the hotspot areas of Arua and Lira districts in Northern Uganda in order to assess their influence on the density of adults and immature stages of BLBs in different seasons. Overall, the number of adults, larvae, and pupae were higher in cowpea than common bean and soybean plots. The number of adults were highest in cowpea (29.5 adults/15 plants) in Arua during the long rainy season (2018A). The number of adults did not differ significantly during short rains (season B) in 2017 and 2018. Similarly, in Lira district, the highest number of adult BLBs was in cowpea (4.6 beetles) compared to the common bean (2.7 beetles) and soybean plots, with a peak at four weeks after planting (WAP). During 2018A, larvae of BLBs first appeared at five WAP and seven WAP and peaked at 13 WAP and 11 WAP in Arua and Lira, respectively. The pupae were present in the soil after the harvesting of crops during 2018A, but peaked at seven WAP and eight WAP in 2018B season in Arua and Lira, respectively. The occurrence of below-ground adults in 2018B followed the peak abundance of pupae, although this was delayed until six WAP in Arua compared to Lira. We conclude that cowpea is the most preferred by adults and larvae compared to common bean and soybean. Similarly, the first rain season (2018A) attracted higher abundance and damage than the second rain season. Management of the BLBs should thus take into consideration avoidance of host crop rotation and dealing with the below-ground stages.

5.
Insects ; 13(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35735880

RESUMO

Bean leaf beetle (BLB) (Ootheca mutabilis) has emerged as an important bean pest in Uganda, leading to devastating crop losses. There is limited information on the population genetic structure of BLB despite its importance. In this study, novel microsatellite DNA markers and the partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene sequences were used to analyze the spatial population genetic structure, genetic differentiation and haplotype diversity of 86 O. mutabilis samples from 16 (districts) populations. We identified 19,356 simple sequence repeats (SSRs) (mono, di-, tri-, tetra-, penta-, and hexa-nucleotides) of which 81 di, tri and tetra-nucleotides were selected for primer synthesis. Five highly polymorphic SSR markers (4-21 alleles, heterozygosity 0.59-0.84, polymorphic information content (PIC) 50.13-83.14%) were used for this study. Analyses of the 16 O. mutabilis populations with these five novel SSRs found nearly all the genetic variation occurring within populations and there was no evidence of genetic differentiation detected for both types of markers. Also, there was no evidence of isolation by distance between geographical and genetic distances for SSR data and mtCOI data except in one agro-ecological zone for mtCOI data. Bayesian clustering identified a signature of admixture that suggests genetic contributions from two hypothetical ancestral genetic lineages for both types of markers, and the minimum-spanning haplotype network showed low differentiation in minor haplotypes from the most common haplotype with the most common haplotype occurring in all the 16 districts. A lack of genetic differentiation indicates unrestricted migrations between populations. This information will contribute to the design of BLB control strategies.

6.
Insects ; 12(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357264

RESUMO

High populations of species in the whitefly complex Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) were reported to cause severe damage to cassava in East and Central Africa. However, reasons for B. tabaci population increases are not well understood. We investigated the effect of cassava morphological traits, temperature, rainfall and relative humidity (RH) on the abundance of B. tabaci. Five cassava genotypes with varying levels of resistance to cassava mosaic disease, cassava brown streak disease, and B. tabaci infestation were planted in three Ugandan agro-ecological zones. The experiment was conducted in 2016 and 2017 in a randomized complete block design. Across all locations, the tallest genotype Alado alado supported the lowest number of B. tabaci adults. In areas with high B. tabaci prevalence, leaf area, leaf lobe width, and leaf lobe number exhibited significant positive effects (p < 0.001) on B. tabaci adult count. Positive effects of relative humidity and negative effects of temperature and rainfall on B. tabaci adult and nymph counts were observed in 2016 and 2017, resulting in low populations in Lira. Evidently, temperatures of 28-30 °C, rainfall of 30-150 mm and RH of 55-70%, and deployment of cassava genotypes of low plant height, large leaf area, and lobe width significantly enhanced B. tabaci population growth.

7.
Insects ; 12(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573080

RESUMO

The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) has successfully invaded Africa, where it has significantly impacted maize and sorghum production. Management of FAW in Africa predominantly relies on synthetic insecticides, which are expensive, and negatively impact the environment and beneficial insects. We, therefore, conducted field surveys in Uganda in 2017 and 2019 to identify egg and larval parasitoids of FAW for possible use in integrated pest management (IPM) programs. Parasitoids were identified by their mitochondrial DNA cytochrome c oxidase subunit 1 (mtCOI) gene sequences. We identified 13 parasitoid species belonging to three families of Hymenoptera: Platygastridae, Braconidae and Ichneumonidae, as well as one Dipteran family (Tachinidae). Coccygidium spp. and Chelonus bifoveolatus were the most abundant and widely distributed parasitoids. Overall, parasitism averaged 9.2% and ranged from 3.1% to 50% in 2017, and 0.8% to 33% in 2019. Parasitism by Sturmiopsis parasitica, Diolcogaster sp., and Cotesia flavipes on FAW in maize crops are reported for the first time. Our results suggest high biological diversity of FAW parasitoids, which should be exploited in the IPM of the FAW in Uganda.

8.
Insect Sci ; 28(3): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32558234

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47-0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.


Assuntos
Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera , Acetilcolinesterase/genética , Animais , Diamida/farmacologia , Genes de Insetos , Genoma de Inseto , Organofosfatos/farmacologia , Mutação Puntual/genética , Mutação Puntual/fisiologia , Piretrinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Canais de Sódio Disparados por Voltagem/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa