Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241936

RESUMO

BACKGROUND: Cathepsin K, which is involved in bone resorption, is a good target for treating osteoporosis, but no clinically approved medicine has been developed. Recently, allosteric inhibitors with high specificity and few side effects have been attracting attention for use in new medicines. METHODS: Cathepsin K inhibitors were isolated from the methanol extract of Chamaecrista nomame (Leguminosae) using cathepsin K inhibition activity-assisted multi-step chromatography. Standard kinetic analysis was employed to examine the mechanism of cathepsin K inhibition when an isolated inhibitor and its derivative were used. The allosteric binding of these cathepsin K inhibitors was supported by a docking study using AutoDock vina. Combinations of allosteric cathepsin K inhibitors expected to bind to different allosteric sites were examined by means of cathepsin K inhibition assay. RESULTS: Two types of cathepsin K inhibitors were identified in the methanol extract of Chamaecrista nomame. One type consisted of cassiaoccidentalin B and torachrysone 8-ß-gentiobioside, and inhibited both cathepsin K and B with similar inhibitory potential, while the other type of inhibitor consisted of pheophytin a, and inhibited cathepsin K but not cathepsin B, suggesting that pheophytin a binds to an allosteric site of cathepsin K. Kinetic analysis of inhibitory activity suggested that pheophytin a and its derivative, pheophorbide b, bind allosterically to cathepsin K. This possibility was supported by a docking study on cathepsin K. The cathepsin K inhibitory activity of pheophytin a and pheophorbide b was enhanced by combining them with the allosteric inhibitors NSC 13345 and NSC94914, which bind to other allosteric sites on cathepsin K. CONCLUSIONS: Different allosteric inhibitors that bind to different sites in combination, as shown in this study, may be useful for designing new allosteric inhibitory drugs with high specificity and few side effects.


Assuntos
Reabsorção Óssea , Metanol , Humanos , Catepsina K/metabolismo , Sítio Alostérico , Cinética , Catepsinas/metabolismo
2.
Mutagenesis ; 30(4): 537-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805024

RESUMO

Epidemiological studies have demonstrated a close association between infection with Helicobacter pylori (H.pylori) and the development of gastric carcinoma. Chronic H.pylori infection increases the frequency of mutation in gastric epithelial cells. However, the mechanism by which infection of H.pylori leads to mutation in gastric epithelial cells is unclear. We suspected that components in H.pylori may be related to the mutagenic response associated with DNA alkylation, and could be detected with the Ames test using a more sensitive strain for alkylating agents. Our investigation revealed that an extract of H.pylori was mutagenic in the Ames test with Salmonella typhimurium YG7108, which is deficient in the DNA repair of O(6)-methylguanine. The extract of H.pylori may contain methylating or alkylating agents, which might induce O (6)-alkylguanine in DNA. Mutagenicity of the alkylating agents N-methyl-N-nitrosourea (MNU) and N-methyl-N'-nitro-N-nitrosoguanidine in the Ames test with S.typhimurium TA1535 was enhanced significantly in the presence of the extract of H.pylori. The tested extracts of H.pylori resulted in a significant induction of micronuclei in human-derived lymphoblastoid cells. Heat instability and dialysis resistance of the extracts of H.pylori suggest that the mutagenic component in the extracts of H.pylori is a heat-unstable large molecule or a heat-labile small molecule strongly attached or adsorbed to a large molecule. Proteins in the extracts of H.pylori were subsequently fractionated using ammonium sulphate precipitation. However, all fractions expressed enhancing effects toward MNU mutagenicity. These results suggest the mutagenic component is a small molecule that is absorbed into proteins in the extract of H.pylori, which resist dialysis. Continuous and chronic exposure of gastric epithelial cells to the alkylative mutagenic component from H.pylori chronically infected in the stomach might be a causal factor in the gastric carcinogenesis associated with H.pylori.


Assuntos
Extratos Celulares/farmacologia , Dano ao DNA/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Linfócitos/efeitos dos fármacos , Mutagênicos/farmacologia , Anemia Ferropriva/microbiologia , Anemia Ferropriva/patologia , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Gastrite Hipertrófica/microbiologia , Gastrite Hipertrófica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Humanos , Linfócitos/metabolismo , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutação/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Úlcera Gástrica/microbiologia , Úlcera Gástrica/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa