Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 166(1): 78-103, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143694

RESUMO

The conditions and extent of cross-protective immunity between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common-cold human coronaviruses (HCoVs) remain open despite several reports of pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure. Using a pool of functionally evaluated SARS-CoV-2 peptides, we report a map of 126 immunogenic peptides with high similarity to 285 MHC-presented peptides from at least one HCoV. Employing this map of SARS-CoV-2-non-homologous and homologous immunogenic peptides, we observe several immunogenic peptides with high similarity to human proteins, some of which have been reported to have elevated expression in severe COVID-19 patients. After combining our map with SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls, we show that public repertoires for the majority of convalescent patients are dominated by TCRs cognate to non-homologous SARS-CoV-2 peptides. We find that for a subset of patients, >50% of their public SARS-CoV-2-specific repertoires consist of TCRs cognate to homologous SARS-CoV-2-HCoV peptides. Further analysis suggests that this skewed distribution of TCRs cognate to homologous or non-homologous peptides in COVID-19 patients is likely to be HLA-dependent. Finally, we provide 10 SARS-CoV-2 peptides with known cognate TCRs that are conserved across multiple coronaviruses and are predicted to be recognized by a high proportion of the global population. These findings may have important implications for COVID-19 heterogeneity, vaccine-induced immune responses, and robustness of immunity to SARS-CoV-2 and its variants.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , Reações Cruzadas , Epitopos de Linfócito T , Humanos , Peptídeos , Receptores de Antígenos de Linfócitos T , Glicoproteína da Espícula de Coronavírus
2.
Toxins (Basel) ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535810

RESUMO

Biliary atresia (BA) is a poorly understood and devastating obstructive bile duct disease of newborns. Biliatresone, a plant toxin, causes BA-like syndrome in some animals, but its relevance in humans is unknown. To validate the hypothesis that biliatresone exposure is a plausible BA disease mechanism in humans, we treated normal human liver organoids with biliatresone and addressed its adverse effects on organoid development, functions and cellular organization. The control organoids (without biliatresone) were well expanded and much bigger than biliatresone-treated organoids. Expression of the cholangiocyte marker CK19 was reduced, while the hepatocyte marker HFN4A was significantly elevated in biliatresone-treated organoids. ZO-1 (a tight junction marker) immunoreactivity was localized at the apical intercellular junctions in control organoids, while it was markedly reduced in biliatresone-treated organoids. Cytoskeleton F-actin was localized at the apical surface of the control organoids, but it was ectopically expressed at the apical and basal sides in biliatresone-treated organoids. Cholangiocytes of control organoids possess primary cilia and elicit cilia mechanosensory function. The number of ciliated cholangiocytes was reduced, and cilia mechanosensory function was hampered in biliatresone-treated organoids. In conclusion, biliatresone induces morphological and developmental changes in human liver organoids resembling those of our previously reported BA organoids, suggesting that environmental toxins could contribute to BA pathogenesis.


Assuntos
Benzodioxóis , Atresia Biliar , Humanos , Recém-Nascido , Animais , Cílios , Fígado , Ductos Biliares
3.
Cancer Cell ; 42(5): 797-814.e15, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744246

RESUMO

The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.


Assuntos
Colite , Inibidores de Checkpoint Imunológico , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Interferon gama/metabolismo , Feminino , Análise de Célula Única , Camundongos
4.
Sci Immunol ; 8(84): eadd9232, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267382

RESUMO

Group A Streptococcus (GAS) infection is associated with multiple clinical sequelae, including different subtypes of psoriasis. Such post-streptococcal disorders have been long known but are largely unexplained. CD1a is expressed at constitutively high levels by Langerhans cells and presents lipid antigens to T cells, but the potential relevance to GAS infection has not been studied. Here, we investigated whether GAS-responsive CD1a-restricted T cells contribute to the pathogenesis of psoriasis. Healthy individuals had high frequencies of circulating and cutaneous GAS-responsive CD4+ and CD8+ T cells with rapid effector functions, including the production of interleukin-22 (IL-22). Human skin and blood single-cell CITE-seq analyses of IL-22-producing T cells showed a type 17 signature with proliferative potential, whereas IFN-γ-producing T cells displayed cytotoxic T lymphocyte characteristics. Furthermore, individuals with psoriasis had significantly higher frequencies of circulating GAS-reactive T cells, enriched for markers of activation, cytolytic potential, and tissue association. In addition to responding to GAS, subsets of expanded GAS-reactive T cell clones/lines were found to be autoreactive, which included the recognition of the self-lipid antigen lysophosphatidylcholine. CD8+ T cell clones/lines produced cytolytic mediators and lysed infected CD1a-expressing cells. Furthermore, we established cutaneous models of GAS infection in a humanized CD1a transgenic mouse model and identified enhanced and prolonged local and systemic inflammation, with resolution through a psoriasis-like phenotype. Together, these findings link GAS infection to the CD1a pathway and show that GAS infection promotes the proliferation and activation of CD1a-autoreactive T cells, with relevance to post-streptococcal disease, including the pathogenesis and treatment of psoriasis.


Assuntos
Linfócitos T CD8-Positivos , Psoríase , Humanos , Camundongos , Animais , Pele , Inflamação/patologia , Streptococcus pyogenes , Camundongos Transgênicos , Lipídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa