Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 49(51): 10811-7, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21090690

RESUMO

Light-induced activation of the LOV2-Jα domain of the photoreceptor phototropin from oat is believed to involve the detachment of the Jα helix from the central ß-sheet and its subsequent unfolding. The dynamics of these conformational changes were monitored by time-resolved emission spectroscopy with 100 ns time resolution. Three transitions were detected during the LOV2-Jα photocycle with time constants of 3.4 µs, 500 µs, and 4.3 ms. The fastest transition is due to the decay of the flavin phosphorescence in the transition of the triplet LOV(L)(660) state to the singlet LOV(S)(390) signaling state. The 500 µs and 4.3 ms transitions are due to changes in tryptophan fluorescence and may be associated with the dissociation and unfolding of the Jα helix, respectively. They are absent in the transient absorption signal of the flavin chromophore. The tryptophan fluorescence signal monitors structural changes outside the chromophore binding pocket and indicates that there are at least three LOV(S)(390) intermediates. Since the 500 µs and 4.3 ms components are absent in a construct without the Jα helix and in the mutant W557S, the fluorescence signal is mainly due to tryptophan 557. The kinetics of the main 500 µs component is strongly temperature dependent with activation energy of 18.2 kcal/mol suggesting its association with a major structural change. In the structurally related PAS domain protein PYP the N-terminal cap dissociates from the central ß-sheet and unfolds upon signaling state formation with a similar time constant of ∼1 ms. Using transient fluorescence we obtained a nearly identical activation energy of 18.5 kcal/mol for this transition.


Assuntos
Avena/metabolismo , Fototropinas/metabolismo , Triptofano/metabolismo , Avena/química , Fluorescência , Luz , Modelos Moleculares , Fototropinas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Espectrometria de Fluorescência/métodos , Temperatura , Triptofano/química
2.
J Phys Chem A ; 114(5): 2179-88, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20085356

RESUMO

Donor-acceptor substituted styrenes and phenylbutadienes with substituents varying in donor and acceptor strength and as reconstituted chromophore-protein complexes were investigated as model compounds for the protonated Schiff base chromophore in bacteriorhodopsin (bR) both experimentally and theoretically. Charge distribution, donor-acceptor strength, and the shift of the absorption energy are correlated. The effect of the external electrostatic field was tested with a compound carrying an additional nonconjugated charge. The concept of overpolarization by the external charge, that is, the reversal of the relative importance of the two main resonance structures in S(0) and S(1), has been emphasized and related to a simple qualitative 2 x 2 interaction model. The variable donor approach is a new way for a better understanding of the Opsin shift in Bacteriorhodopsin.


Assuntos
Bacteriorodopsinas/química , Butadienos/química , Biologia Computacional , Modelos Moleculares , Opsinas/química , Óptica e Fotônica , Proteínas/química , Prótons , Teoria Quântica , Bases de Schiff/química , Estirenos/química , Termodinâmica
3.
Biochemistry ; 48(42): 9980-93, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19764818

RESUMO

In the Y42F mutant of photoactive yellow protein (PYP) the photoreceptor is in an equilibrium between two dark states, the yellow and intermediate spectral forms, absorbing at 457 and 390 nm, respectively. The nature of this equilibrium and the light-induced protonation and structural changes in the two spectral forms were characterized by transient absorption, fluorescence, FTIR, and pH indicator dye experiments. In the yellow form, the oxygen of the deprotonated p-hydroxycinnamoyl chromophore is linked by a strong low-barrier hydrogen bond to the protonated carboxyl group of Glu46 and by a weaker one to Thr50. Using FTIR, we find that the band due to the carbonyl of the protonated side chain of Glu46 is shifted from 1736 cm(-1) in wild type to 1724 cm(-1) in the yellow form of Y42F, implying a stronger hydrogen bond with the deprotonated chromophore in Y42F. The FTIR data suggest moreover that in the intermediate spectral form the chromophore is protonated and Glu46 deprotonated. Flash spectroscopy (50 ns-10 s) shows that the photocycles of the two forms are essentially the same except for a transition around 5 mus that has opposite signs in the two forms and is due to the chemical relaxation between the two dark states. The two cycles are coupled, likely by excited state proton transfer. The Y42F cycle differs from wild type by the occurrence of a new intermediate with protonated chromophore between the usual I(1) and I(2) intermediates which we call I(1)H (370 nm). Transient fluorescence measurements indicate that in I(1)H the chromophore retains the orientation it had in I(1). Transient proton uptake occurs with a time constant of 230 mus and a stoichiometry of 1. No proton uptake was associated however with the formation of the I(1)H intermediate and the relaxation of the yellow/intermediate equilibrium. These protonation changes of the chromophore thus occur intramolecularly. The chromophore-Glu46 hydrogen bond in Y42F is shorter than in wild type, since the adjacent chromophore-Y42 hydrogen bond is replaced by a longer one with Thr50. This facilitates proton transfer from Glu46 to the chromophore in the dark by lowering the barrier, leading to the protonation equilibrium and causing the rapid light-induced proton transfer which couples the cycles.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácido Glutâmico/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Prótons , Proteínas de Bactérias/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Ligação de Hidrogênio , Cinética , Mutação , Fotorreceptores Microbianos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biochemistry ; 47(44): 11518-27, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18847221

RESUMO

The transient changes of the tryptophan fluorescence of bovine rhodopsin in ROS membranes were followed in time from 1 micros to 10 s after flash excitation of the photoreceptor. Up to about 100 micros the fluorescence did not change, suggesting that the tryptophan lifetimes in rhodopsin and the M(I) intermediate are similar. The fluorescence then decreases on the millisecond time scale with kinetics that match the rise of the M(II) state as measured on the same sample by the transient absorption increase at 360 nm. Both the sign and kinetics of the fluorescence change strongly suggest that it is due to an increase in energy transfer to the retinylidene chromophore caused by the increased spectral overlap in M(II). Calculation of the Forster radius of each tryptophan from the high-resolution crystal structure suggests that W265 and W126 are already completely quenched in the dark, whereas W161, W175, and W35 are located at distances from the retinal chromophore that are comparable to their Forster radii. The fluorescence from these residues is thus sensitive to an increase in energy transfer in M(II). Similar results were obtained at other temperatures and with monomeric rhodopsin in dodecyl maltoside micelles. A large light-induced transient fluorescence increase was observed with ROS membranes that were selectively labeled with Alexa594 at cysteine 316 in helix 8. Using transient absorption spectroscopy the kinetics of this structural change at the cytoplasmic surface was compared to the formation of the signaling state M(II) (360 nm) and to the kinetics of proton uptake as measured with the pH indicator dye bromocresol purple (605 nm). The fluorescence kinetics lags behind the deprotonation of the Schiff base. The proton uptake is even further delayed. These observations show that in ROS membranes (at pH 6) the sequence of events is Schiff base deprotonation, structural change, and proton uptake. From the temperature dependence of the kinetics we conclude that the Schiff base deprotonation and the transient fluorescence have comparable activation energies, whereas that of proton uptake is much smaller.


Assuntos
Rodopsina/química , Rodopsina/efeitos da radiação , Animais , Bovinos , Cristalografia por Raios X , Técnicas In Vitro , Cinética , Modelos Moleculares , Fotoquímica , Conformação Proteica/efeitos da radiação , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/química , Segmento Externo da Célula Bastonete/metabolismo , Segmento Externo da Célula Bastonete/efeitos da radiação , Espectrometria de Fluorescência , Termodinâmica , Triptofano/química
5.
J Phys Chem B ; 112(30): 9118-25, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18605685

RESUMO

The cinnamoyl chromophore is the light-activated switch of the photoreceptor photoactive yellow protein (PYP) and isomerizes during the functional cycle. The fluorescence of W119, the only tryptophan of PYP, is quenched by energy transfer to the chromophore. This depends on the chromophore's transition dipole moment orientation and spectrum, both of which change during the photocycle. The transient fluorescence of W119 thus serves as a sensitive kinetic monitor of the chromophore's structure and orientation and was used for the first time to investigate the photocycle kinetics. From these data and measurements of the ps-fluorescence decay with background illumination (470 nm) we determined the fluorescence lifetimes of W119 in the I(1) and I (1') intermediates. Two coexisting distinct chromophore structures were proposed for the I(1) photointermediate from time-resolved X-ray diffraction ( Ihee, H., et al. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 7145 ): one with two hydrogen bonds to E46 and Y42, and a second with only one H-bond to Y42 and a different orientation. Only for the first of these is the calculated fluorescence lifetime of 0.22 ns in good agreement with the observed one of 0.26 ns. The second structure has a predicted lifetime of 0.71 ns. Thus, we conclude that in solution only the first I(1) structure occurs. The high resolution structure of the I(1') intermediate, the decay product of I(1) at alkaline pH, is still unknown. We predict from the observed lifetime of 1.3 ns that the chromophore structure of I(1') is quite similar to that of the I(2) intermediate, and I(1') should thus be considered as the alkaline (deprotonated) form of I(2).


Assuntos
Proteínas de Bactérias/química , Transferência de Energia , Halorhodospira halophila/química , Fotorreceptores Microbianos/química , Cristalografia por Raios X , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Fatores de Tempo , Triptofano/química
6.
FEBS Lett ; 581(28): 5425-9, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17976380

RESUMO

The bacteriophytochrome Agp1 was reconstituted with a locked 5Zs-biliverdin in which the C(4)=C(5) and C(5)-C(6) bonds of the methine bridge between rings A and B are fixed in the Z and syn configuration/conformation, respectively. In Agp1-5Zs the photoconversion proceeds via the Lumi-R intermediate to Meta-R(A), but the following millisecond-transition to Meta-R(C) is blocked. Consistently, no transient proton release was detected. The photoconversion of Agp1-5Zs is apparently arrested in a Meta-R(A)-like intermediate, since the subsequent syn to anti rotation around the C(5)-C(6) bond is prevented by the lock. The Meta-R(A)-like photoproduct was characterized by its distinctive CD spectrum suggesting a reorientation of ring D.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas de Bactérias/metabolismo , Biliverdina/farmacologia , Fitocromo/metabolismo , Biliverdina/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Cinética , Luz , Estrutura Molecular , Fotoquímica , Fitocromo/química , Prótons
7.
J Phys Chem B ; 109(1): 629-33, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16851055

RESUMO

The absorption and CD spectra of wild-type PYP, apo-PYP, and the mutants, E46Q and M100A, were measured between 250 and 550 nm. At neutral pH, the two very weak absorption bands of wild-type PYP at 307 and 318 nm (epsilon(max) = 600 +/- 100 M(-1) cm(-1) at 318 nm) are associated with quite strong positive CD bands (Deltaepsilon(max) approximately 6.8 M(-1) cm(-1)). Both sets of bands are absent in the apoprotein. On the basis of this evidence, we assign these optical signals to the n --> pi* transition of the oxygen of the carbonyl group of the 4-hydroxycinnamic acid chromophore, which is expected to be electric dipole forbidden but magnetic dipole allowed. The progression of narrow bands at 307 and 318 nm with a shoulder in the CD around 329 nm is due to vibrational fine structure with a frequency of about 1050 +/- 50 cm(-1). This is the carbonyl stretch frequency in the electronically excited state and is well-known from the vibrational structure in the CD spectra of carbonyl compounds. The positive sign of the CD in the near UV is in accordance with the octant rule and the high-resolution X-ray structure, if we assume that the NH group of cysteine 69 to which the carbonyl is hydrogen bonded is the principle perturbant. Similar absorption and CD spectra were observed in the range of 300-340 nm for the mutants E46Q and M100A at neutral pH. Protonation of the trans chromophore by lowering the pH in the dark (without photoisomerization) broadens the 307 and 318 nm CD bands in the mutant E46Q but does not significantly affect their positions or alter their sign. For the long-lived I(2) photointermediate of the mutant M100A with protonated cis chromophore, we observed that the sign of the rotational strength in the 310-320 nm range is negative (i.e., opposite to that in the dark state with trans chromophore). This suggests that the light-induced isomerization of the chromophore, which leads to breaking of the hydrogen bond with the backbone amide of C69, brings the carbonyl into a new protein environment with different asymmetry than in the unbleached protein. The observed change in sign is mainly due to this effect, but a change in chromophore twist may also contribute. Thus, the 318 nm CD signal is a sensitive marker for the environment of the chromophore carbonyl, which samples various environments and configurations during the photocycle.


Assuntos
Proteínas de Bactérias/química , Dicroísmo Circular/métodos , Ácidos Cumáricos/química , Fotorreceptores Microbianos/química , Concentração de Íons de Hidrogênio , Fotoquímica , Propionatos , Sensibilidade e Especificidade , Espectrofotometria/métodos
8.
Phys Chem Chem Phys ; 11(26): 5437-44, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19551213

RESUMO

The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.


Assuntos
Proteínas de Bactérias/química , Luz , Fotorreceptores Microbianos/química , Proteínas de Bactérias/genética , Corantes/química , Cristalografia por Raios X , Modelos Moleculares , Mutação , Fotorreceptores Microbianos/genética , Transdução de Sinais , Espectrofotometria
9.
Biophys J ; 93(5): 1687-99, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17496031

RESUMO

The effect of ionic strength on the conformational equilibrium between the I(2) intermediate and the signaling state I(2)' of the photoreceptor PYP and on the rate of recovery to the dark state were investigated by time-resolved absorption and fluorescence spectroscopy. With increasing salt concentration up to approximately 600 mM, the recovery rate k(3) decreases and the I(2)/I(2)' equilibrium (K) shifts in the direction of I(2)'. At higher ionic strength both effects reverse. Experiments with mono-(KCl, NaBr) and divalent (MgCl(2), MgSO(4)) salts show that the low salt effect depends on the ionic strength and not on the cation or anion species. These observations can be described over the entire ionic strength range by considering the activity coefficients of an interdomain salt bridge. At low ionic strength the activity coefficient decreases due to counterion screening whereas at high ionic strength binding of water by the salt leads to an increase in the activity coefficient. From the initial slopes of the plots of log k(3) and log K versus the square root of the ionic strength, the product of the charges of the interacting groups was found to be -1.3 +/- 0.2, suggesting a monovalent ion pair. The conserved salt bridge K110/E12 connecting the beta-sheet of the PAS core and the N-terminal domain is a prime candidate for this ion pair. To test this hypothesis, the mutants K110A and E12A were prepared. In K110A the salt dependence of the I(2)/I(2)' equilibrium was eliminated and of the recovery rate was greatly reduced below approximately 600 mM. Moreover, at low salt the recovery rate was six times slower than in wild-type. In E12A significant salt dependence remained, which is attributed to the formation of a novel salt bridge between K110 and E9. At high salt reversal occurs in both mutants suggesting that salting out stabilizes the more compact I(2) structure. However, chaotropic anions like SCN shift the I(2)/I(2)' equilibrium toward the partially unfolded I(2)' form. The salt linkage K110/E12 stabilizes the photoreceptor in the inactive state in the dark and is broken in the light-induced formation of the signaling state, allowing the N-terminal domain to detach from the beta-scaffold PAS core.


Assuntos
Proteínas de Bactérias/química , Biofísica/métodos , Células Fotorreceptoras/metabolismo , Fotorreceptores Microbianos/química , Sais/farmacologia , Ânions , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Estatísticos , Mutação , Estrutura Terciária de Proteína , Sais/química , Transdução de Sinais , Espectrometria de Fluorescência , Fatores de Tempo
10.
Biophys J ; 91(8): 2991-3001, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16829563

RESUMO

The signaling state of the photoreceptor photoactive yellow protein is the long-lived intermediate I(2)'. The pH dependence of the equilibrium between the transient photocycle intermediates I(2) and I(2)' was investigated. The formation of I(2)' from I(2) is accompanied by a major conformational change. The kinetics and intermediates of the photocycle and of the photoreversal were measured by transient absorption spectroscopy from pH 4.6 to 8.4. Singular value decomposition (SVD) analysis of the data at pH 7 showed the presence of three spectrally distinguishable species: I(1), I(2), and I(2)'. Their spectra were determined using the extrapolated difference method. I(2) and I(2)' have electronic absorption spectra, with maxima at 370 +/- 5 and 350 +/- 5 nm, respectively. Formation of the signaling state is thus associated with a change in the environment of the protonated chromophore. The time courses of the I(1), I(2), and I(2)' intermediates were determined from the wavelength-dependent transient absorbance changes at each pH, assuming that their spectra are pH-independent. After the formation of I(2)' ( approximately 2 ms), these three intermediates are in equilibrium and decay together to the initial dark state. The equilibrium between I(2) and I(2)' is pH dependent with a pK(a) of 6.4 and with I(2)' the main species above this pK(a). Measurements of the pH dependence of the photoreversal kinetics with a second flash of 355 nm at a delay of 20 ms confirm this pK(a) value. I(2) and I(2)' are photoreversed with reversal times of approximately 55 micros and several hundred microseconds, respectively. The corresponding signal amplitudes are pH dependent with a pK(a) of approximately 6.1. Photoreversal from I(2)' dominates above the pK(a). The transient accumulation of I(2)', the active state of photoactive yellow protein, is thus controlled by the proton concentration. The rate constant k(3) for the recovery to the initial dark state also has a pK(a) of approximately 6.3. This equality of the equilibrium and kinetic pK(a) values is not accidental and suggests that k(3) is proportional to [I(2)'].


Assuntos
Proteínas de Bactérias/fisiologia , Halorhodospira halophila/fisiologia , Fotorreceptores Microbianos/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Bactérias/química , Halorhodospira halophila/efeitos da radiação , Concentração de Íons de Hidrogênio , Cinética , Luz , Fotorreceptores Microbianos/química , Conformação Proteica
11.
Biochemistry ; 45(23): 7057-68, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16752896

RESUMO

Since the habitat of Halorhodospira halophila is distinctly alkaline, we investigated the kinetics and intermediates of the photocycle and photoreversal of the photoreceptor photoactive yellow protein (PYP) from pH 8 to 11. SVD analysis of the transient absorption time traces in a broad wavelength range (330-510 nm) shows the presence of three spectrally distinct species (I1, I1', and I2') at pH 10. The spectrum of I1' was obtained in two different ways. The maximal absorption is at 425 nm. I1' probably has a deprotonated chromophore and may be regarded as the alkaline form of I2'. At pH 10, the I1 intermediate decays in approximately 330 micros in part to I1' before I1 and I1' decay further to I2' in approximately 1 ms. From the rise of I2' (approximately 1 ms) to the end of the photocycle, the three intermediates (I1, I1', and I2') remain in equilibrium and decay together to P in approximately 830 ms. Assuming that the spectra of I1, I1', and I2' are pH-independent, their time courses were determined. On the millisecond to second time scale, they are in a pH-dependent equilibrium with a pKa of approximately 9.9. With an increase in pH, the I1 and I1' populations increase at the expense of the amount of I2'. The apparent rate constant for the recovery of P slows with an increase in pH with a pKa of approximately 9.7. The equal pH dependence of this rate and the equilibrium concentrations follows, if we assume that the equilibration rates between the intermediates are much faster than the recovery rate and that the recovery occurs from I2'. The pKa of approximately 9.9 is assigned to the deprotonation of the phenol of the surface-exposed chromophore in the I1'-I2' equilibrium. The I1-I1' equilibrium is pH-independent. Photoreversal experiments at pH 10 with the second flash at 355 nm indicate the presence of only one I2-like intermediate, which we assign on the basis of its lambda(max) value to I2'. After the rapid unresolved photoisomerization to I2'(trans), the reversal pathway back to P involves two sequential steps (60 micros and 3 ms). The amplitude spectra show that I1'(trans) and I1(trans) intermediates participate in this reversal.


Assuntos
Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Fotoquímica , Fotorreceptores Microbianos/química , Cinética
12.
Biochemistry ; 44(51): 16804-16, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16363794

RESUMO

We show from time-resolved fluorescence intensity and depolarization experiments that the fluorescence of the unique tryptophan W119 of PYP is quenched by energy transfer to the 4-hydroxycinnamoyl chromophore. Whereas the intensity decay has a time constant of 0.18 ns in P, the decay in the absence of the cofactor (apo-PYP) has a single exponential lifetime of 4.8 ns. This difference in lifetime with and without acceptor can be explained quantitatively on the basis of energy transfer and the high-resolution X-ray structure of P, which allows an accurate calculation of the kappa2 factor. Fluorescence depolarization experiments with donor and acceptor indicate that both are immobilized so that kappa2 is constant on the fluorescence time scale. Using background illumination from an LED emitting at 470 nm, we measured the time-resolved fluorescence in a photostationary mixture of P and the intermediates I2 and I2'. The composition of the photostationary mixture depends on pH and changes from mainly I2 at low pH to predominantly I2' at high pH. The I2/I2' equilibrium is pH-dependent with a pKa of approximately 6.3. In I2 the lifetime increases to approximately 0.82 ns. This is not due to a change in distance or to the increase in spectral overlap but is primarily a consequence of a large decrease in kappa2. Kappa2 was calculated from the available X-ray structures and decreases from approximately 2.7 in P to 0.27 in I2. This change in kappa2 is caused by the isomerization of the acceptor, which leads to a reorientation of its transition dipole moment. We have here a rare case of the kappa2 factor dominating the change in energy transfer. The fluorescence decay in the light is pH-dependent. From an SVD analysis of the light/dark difference intensity decay at a number of pH values, we identify three species with associated lifetimes: P (0.18 ns), I2 (0.82 ns), and X (0.04 ns). On the basis of the pH dependence of the amplitudes associated with I2 and X, with a pKa of approximately 6.3, we assign the third species to the signaling state I2'. The absorption spectra of the 0.82 and 0.04 ns species were calculated from the pH dependence of their fluorescence amplitudes and of the photostationary light/dark difference absorption spectra. The lambda(max) values of these spectra (372 and 352 nm) identify the 0.82 and 0.04 ns components with I2 and I2', respectively, and validate the fluorescence data analysis. The mutant E46Q allows a further test of the energy transfer explanation, since lowering the pH in the dark leads to a bleached state with an increased spectral overlap but without the isomerization-induced decrease in kappa2. The measured lifetime of 0.04 ns is in excellent agreement with predictions based on energy transfer and the X-ray structure.


Assuntos
Proteínas de Bactérias/química , Transferência de Energia , Fluorescência , Fotorreceptores Microbianos/química , Triptofano/química , Algoritmos , Proteínas de Bactérias/genética , Ácidos Cumáricos/química , Halorhodospira halophila/química , Halorhodospira halophila/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Fotodegradação , Fotoquímica , Fotorreceptores Microbianos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Fatores de Tempo
13.
Biochemistry ; 44(2): 656-65, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15641791

RESUMO

We investigated the kinetics of photoreversal from the I(1) and I(2) intermediates of photoactive yellow protein (PYP) by time-resolved optical absorption spectroscopy with double flash excitation. A first flash, at 430 nm, initiated the photocycle. After a variable time delay, the I(1) intermediate was photoreversed by a second flash, at 500 nm, or a mixture of I(2) and I(2)' intermediates was photoreversed by a second flash, at 355 nm. By varying the delay from 1 micros to 3 s, we were able to selectively excite the intermediates I(1), I(2), and I(2)'. The photoreversal kinetics of I(2) and I(2)' at 21 different delays and two wavelengths (340 and 450 nm) required two exponentials for a global fit with time constants of tau(1) = 57 +/- 5 micros and tau(2) = 380 +/- 40 micros (pH 6, 20 degrees C). These were assigned to photoreversal from sequential I(2) and I(2)' intermediates, respectively. The good agreement of the delay dependence of the two amplitudes, A(1) and A(2), with the time dependence of the I(2) and I(2)' populations provided strong evidence for the sequential model. The persistence of A(1) beyond delay times of 5 ms and its decay, together with A(2) around 500 ms, suggest moreover that I(2) and I(2)' are in thermal equilibrium. The wavelength dependence of the photoreversal kinetics was measured at 26 wavelengths from 510 to 330 nm at the two fixed delays of 1 and 10 ms. These data also required two exponentials for a global fit with tau(1) = 59 +/- 5 micros and tau(2) = 400 +/- 40 micros, in good agreement with the delay results. Photoreversal from I(2)' is slower than from I(2), since, in addition to chromophore protonation, the global conformational change has to be reversed. Our data thus provide a first estimate of about 59 micros for deprotonation and 400 micros for the structural change, which also occurs in the thermal decay of the signaling state but is obscured there since reisomerization is rate-limiting. The first step in photoreversal is rapid cis-trans isomerization of the chromophore, which we could not resolve, but which was detected by the instantaneous increase in absorbance between 330 and 380 nm. In agreement with this observation, the spectrum of the I(2)'(trans) intermediate, derived from the A(2) amplitude spectrum, has a much larger extinction coefficient than the spectrum of the I(2)'(cis) intermediate. With a first flash, at 430 nm, and a second flash, at 500 nm, we observed efficient photoreversal of the I(1) intermediate at a delay of 20 micros when most molecules in the cycle are in I(1). We conclude that each of the three intermediates studied can be reversed by a laser flash. Depending on the progression of the photocycle, reversal becomes slower with the time delay, thus mirroring the individual steps of the forward photocycle.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fotólise , Fotoperíodo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Escuridão , Halorhodospira halophila , Isomerismo , Cinética , Luz , Modelos Químicos , Transdução de Sinais , Espectrofotometria , Fatores de Tempo
14.
Biochemistry ; 44(42): 13650-63, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16229455

RESUMO

We investigated the photocycle of mutants Y98Q and Y98F of the photoactive yellow protein (PYP) from Halorhodospira halophila. Y98 is located in the beta4-beta5 loop and is thought to interact with R52 in the alpha3-alpha4 loop thereby stabilizing this region. Y98 is conserved in all known PYP species, except in Ppr and Ppd where it is replaced by F. We find that replacement of Y98 by F has no significant effect on the photocycle kinetics. However, major changes were observed with the Y98Q mutant. Our results indicate a requirement for an aromatic ring at position 98, especially for recovery and a normal I1/I2 equilibrium. The ring of Y98 could stabilize the beta4-beta5 loop. Alternatively, the Y98 ring could transiently interact with the isomerized chromophore ring, thereby stabilizing the I2 intermediate in the I1/I2 equilibrium. For Y98Q, the decay of the signaling state I2' was slowed by a factor of approximately 40, and the rise of the I2 and I2' intermediates was slowed by a factor of 2-3. Moreover, the I1 intermediate is in a pH-dependent equilibrium with I2/I2' with the ratio of the I1 and I2 populations close to one at pH 7 and 50 mM KCl. From pH 5.5 to 8, the equilibrium shifts toward I1, with a pKa of approximately 6.3. Above pH 8, the populations of I1 and I2/I2' decrease due to an equilibrium between I1 and an additional species I1' which absorbs at approximately 425 nm (pKa approximately 9.8) and which we believe to be an I2-like form with a surface-exposed deprotonated chromophore. The I1/I2/I2' equilibrium was found to be strongly dependent on the KCl concentration, with salt stabilizing the signaling state I2' up to 600 mM KCl. This salt-induced transition to I2' was analyzed and interpreted as ion binding to a specific site. Moreover, from analysis of the amplitude spectra, we conclude that KCl exerts its major effect on the I2 to I2' transition, i.e., the global conformational change leading to the signaling state I2' and the exposure of a hydrophobic surface patch. In wild type and Y98F, the I1/I2 equilibrium is more on the side of I2/I2' as compared to Y98Q but is also salt-dependent at pH 7. The I2 to I2' transition appears to be controlled by an ionic lock, possibly involving the salt bridge between K110 on the beta-scaffold and E12 on the N-terminal cap. Salt binding would break the salt bridge and weaken the interaction between the two domains, facilitating the release of the N-terminal domain from the beta-scaffold in the formation of I2'.


Assuntos
Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Mutação , Fotorreceptores Microbianos/química , Sais/química , Proteínas de Bactérias/genética , Halorhodospira halophila/química , Halorhodospira halophila/genética , Fotoquímica , Fotorreceptores Microbianos/genética
15.
J Biol Chem ; 280(40): 34358-64, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16061486

RESUMO

The Pr --> Pfr phototransformation of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens and the structures of the biliverdin chromophore in the parent states and the cryogenically trapped intermediate Meta-R(C) were investigated with resonance Raman spectroscopy and flash photolysis. Strong similarities with the resonance Raman spectra of plant phytochrome A indicate that in Agp1 the methine bridge isomerization state of the chromophore is ZZZasa in Pr and ZZEssa in Pfr, with all pyrrole nitrogens being protonated. Photoexcitation of Pr is followed by (at least) three thermal relaxation components in the formation of Pfr with time constants of 230 micros and 3.1 and 260 ms. H2O/D2O exchange reveals kinetic isotope effects of 1.9, 2.6, and 1.3 for the respective transitions that are accompanied by changes of the amplitudes. The second and the third relaxation correspond to the formation and decay of Meta-R(C), respectively. Resonance Raman measurements of Meta-R(C) indicate that the chromophore adopts a deprotonated ZZE configuration. Measurements with a pH indicator dye show that formation and decay of Meta-R(C) are associated with proton release and uptake, respectively. The stoichiometry of the proton release corresponds to one proton per photoconverted molecule. The coupling of transient chromophore deprotonation and proton release, which is likely to be an essential element in the Pr --> Pfr photocon-version mechanism of phytochromes in general, may play a crucial role for the structural changes in the final step of the Pfr formation that switch between the active and the inactive state of the photoreceptor.


Assuntos
Agrobacterium tumefaciens/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Fitocromo/fisiologia , Prótons , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Pigmentos da Retina/análise , Pigmentos da Retina/metabolismo , Análise Espectral Raman , Tetrapirróis
16.
Biochemistry ; 42(19): 5885-95, 2003 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12741847

RESUMO

We investigated the dimerization of phytochrome Cph1 from the cyanobacterium Synechocystis by fluorescence resonance energy transfer (FRET). As donor we used the chromophore analogue phycoerythrobilin (PEB) and as acceptor either the natural chromophore phycocyanobilin (PCB; hetero transfer) or PEB (homo transfer). Both chromophores bind in a 1:1 stoichiometry to apo-monomers expressed in Escherichia coli. Energy transfer was characterized by time-resolved fluorescence intensity and anisotropy decay after excitation of PEB by picosecond pulses from a tunable Ti-sapphire laser system. ApoCph1 was first assembled with PEB at a low stoichiometry of 0.1. The remaining sites were then sequentially titrated with PCB. In the course of this titration, the mean lifetime of PEB decreased from 3.33 to 1.25 ns in the P(r) form of Cph1, whereas the anisotropy decay was unaffected. In the P(fr)/P(r) photoequilibrium (about 65% P(fr)), the mean lifetime decreased significantly less, to 1.67 ns. These observations provide strong support for inter-chromophore hetero energy transfer in mixed PEB/PCB dimers. The reduced energy transfer in P(fr) may be due to a structural difference but is at least in part due to the difference in spectral overlap, which was 4.1 x 10(-13) and 1.6 x 10(-13) cm(3) M(-1) in P(r) and P(fr), respectively. From the changes in the mean lifetime, rates of hetero energy transfer of 0.68 and 0.37 ns(-1) were calculated for the P(r) form and the P(fr)/P(r) photoequilibrium, respectively. Sequential titration of apo Cph1 with PEB alone to full occupancy did not affect the intensity decay but led to a substantial increase in depolarization. This is the experimental signature of homo energy transfer. Values for the rate of energy transfer k(HT) (0.47 ns(-1)) and the angle 2theta between the transition dipole moment directions (2theta = 45 +/- 5 degrees) were determined from an analysis of the concentration dependence of the anisotropy at five different PEB/Cph1 stoichiometries. The independently determined rates of hetero and homo energy transfer are thus of comparable magnitude and consistent with the energy transfer interpretation. Using these results and exploiting the 2-fold symmetry of the dimer, the chromophore-chromophore distance R(DA) was calculated and found to be in the range 49 A < R(DA) < 63 A. Further evidence for energy transfer in Cph1 dimers was obtained from dilution experiments with PEB/PEB dimers: the lifetime was unchanged, but the anisotropy increased as the dimers dissociated with increasing dilution. These experiments allowed a rough estimate of 5 +/- 3 microM for the dimer dissociation constant. With the deletion mutant Cph1Delta2 that lacks the carboxy terminal histidine kinase domain less energy transfer was observed suggesting that in this mutant dimerization is much weaker. The carboxy terminal domain of Cph1 that is involved in intersubunit trans-phosphorylation and signal transduction thus plays a dominant role in the dimerization. The FRET method provides a sensitive assay to monitor the association of Cph1 monomers.


Assuntos
Proteínas de Bactérias , Cianobactérias/química , Fitocromo/química , Proteínas Quinases/química , Cianobactérias/metabolismo , Dimerização , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Cinética , Fotorreceptores Microbianos , Ficobilinas , Ficocianina/química , Ficocianina/metabolismo , Ficoeritrina/química , Ficoeritrina/metabolismo , Fitocromo/metabolismo , Proteínas Quinases/metabolismo , Estrutura Quaternária de Proteína , Pirróis/química , Pirróis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetrapirróis
17.
Biochemistry ; 42(46): 13684-97, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14622015

RESUMO

The kinetics and mechanism of the autocatalytic assembly of holo-Cph1 phytochrome (from Synechocystis) from the apoprotein and the bilin chromophores phycocyanobilin (PCB) and phycoerythrobilin (PEB) were investigated by stopped flow and circular dichroism. At 1:1 stoichiometry, pH 7.9, and 10 degrees C, SVD analysis of the kinetic data for PCB revealed three spectral components involving three transitions with time constants tau(1) approximately 150 ms, tau(2) approximately 2.5 s, and tau(3) approximately 50 s. Tau(1) was associated with a major red shift and transfer of oscillator strength from the Soret region to the 680 nm region. When the sulfhydryl group of cysteine 259 was blocked with iodoacetamide, preventing the formation of a covalent adduct, a noncovalent red-shifted complex (680 nm) was formed with a time constant of 200 ms. Tau(1) could thus be assigned to the formation of a noncovalent complex. The absorption changes during tau(1) are due to the formation of the extended conformation of the linear tetrapyrrole and to its protonation in the binding pocket. From the concentration and pH dependence of the kinetics we obtained a value of 1.5 microM for the K(D) of this noncovalent complex and a value of 8.4 for the pK(a) of the proton donor. The tau(2) component was associated with a blue shift of about 25 nm and was attributed to the formation of the covalent bond (P(r)), accompanied with the loss of the 3-3' double bond to ring A. Tau(3) was due to photoconversion to P(fr). For PEB, which is not photochromic, the formation of the noncovalent complex is faster (tau(1) = 70 ms), but the covalent bond formation is about 80 times slower (tau(2) = 200 s) than with the natural chromophore PCB. The CD spectra of the PCB adduct in the 250-800 nm range show that the chromophore geometries in P(r) and P(fr) are similar to those in plant phytochrome. The opposite rotational strengths of P(r) and P(fr) in the longest wavelength band suggest that the photoisomerization induces a reversal of the chirality. The Cph1 complex with noncovalently bound PCB was still photochromic when cysteine 259 was blocked with IAA or with the bulkier IAF. The covalent linkage to cysteine 259 is thus not required for photoconversion. The CD spectra of the noncovalently bound PCB in P(r)- and P(fr)-like states are qualitatively similar to those of the covalent adducts, suggesting analogous structures in the binding pocket. The noncovalent interactions with the binding pocket are apparently sufficient to hold the chromophore in the appropriate geometry for photoisomerization.


Assuntos
Proteínas de Bactérias , Fitocromo/química , Proteínas Quinases/química , Apoproteínas/química , Dicroísmo Circular , Cianobactérias/química , Interpretação Estatística de Dados , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Iodoacetamida/farmacologia , Cinética , Fotorreceptores Microbianos , Ficobilinas , Ficocianina/química , Ficoeritrina/química , Pirróis/química , Espectrofotometria/métodos , Tetrapirróis
18.
Biochemistry ; 41(31): 10026-37, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146967

RESUMO

We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP is protonated directly from the external medium rather than by the internal donor E46.


Assuntos
Proteínas de Bactérias/metabolismo , Púrpura de Bromocresol/metabolismo , Corantes/metabolismo , Mutação , Fenolsulfonaftaleína/análogos & derivados , Fenolsulfonaftaleína/metabolismo , Fotorreceptores Microbianos , Prótons , Proteínas de Bactérias/genética , Ectothiorhodospira/metabolismo , Cinética
19.
Biochemistry ; 42(29): 8780-90, 2003 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12873139

RESUMO

The kinetics of the photocycle of PYP and its mutants E46Q and E46A were investigated as a function of pH. E46 is the putative donor of the chromophore which becomes protonated in the I(2) intermediate. For E46Q we find that I(2) is in a pH-dependent equilibrium with its precursor I(1)' with a pK(a) of 8.15 and n = 1. From this result and from experiments with pH indicator dyes, we conclude that in the I(1)' to I(2) transition one proton is taken up from the external medium. The pK(a) of 8.15 is that of the surface-exposed chromophore in the equilibrium between I(1)' and I(2) and is close to that of the phenolate group of p-hydroxycinnamic acid. The pH-dependent I(1)'/I(2) equilibrium with associated H(+) uptake is reminiscent of the M(I)/M(II) equilibrium in the formation of the signaling state of rhodopsin. Well above this pK(a) no I(2) is formed and I(1)' returns in a pH-independent manner to the initial state P. The decay rate for the return to P via I(2) is between pH 4 and pH 8, exactly proportional to the hydroxide concentration (first order), and the deprotonation of the chromophore in this transition occurs by hydroxide uptake. Well above the pK(a) of 8.15 the apparent rate constant for the return to P is constant due to the branching from I(1)'. Complementary measurements with the pH indicator dye cresol red at pH 8.3 show that the remaining PYP molecules that still cycle via I(2) take up one proton in the formation of I(2). Together, these observations provide compelling evidence that during the photocycle the chromophore in E46Q is protonated and deprotonated from the external medium. For the yellow form of the mutant E46A the apparent rate constant for the return to P is also linear in [OH(-)] below about pH 8.3 and constant above about pH 9.5, with a pK(a) value of 8.8 for I(1)', suggesting a similar mechanism of chromophore protonation/deprotonation as in E46Q. For wild type qualitatively similar observations were made: the amplitude of I(2) decreased at alkaline pH, I(1)' and I(2) were in equilibrium, and I(1)' decayed together with the return to P. Chromophore hydrolysis prevented, however, an accurate determination of the pK(a) of I(1)'. We estimate that its value is above 11. The ground state P is in the dark in a pH-dependent equilibrium with a low-pH bleached form P(bl) with protonated chromophore. The pK(a) values for these equilibria are 4.8 and 7.9 for E46Q and E46A, respectively. When the pH is close to these pK(a)'s, the kinetics of the photocycle contains additional components in the millisecond time range. Using pH-jump stopped-flow experiments, we show that these contributions are due to the relaxation of the P/P(bl) equilibrium which is perturbed by the rapid decrease in the P concentration caused by the flash excitation of P. The condition for the occurrence of this effect is that the relaxation time of the P/P(bl) equilibrium is faster than the photocycle time.


Assuntos
Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Corantes/farmacologia , Cristalografia por Raios X , Ectothiorhodospira/enzimologia , Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Luz , Modelos Químicos , Prótons , Rodopsina/química , Transdução de Sinais , Espectrofotometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa