Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430914

RESUMO

It is a macro-micro model study for defect initiation, growth and crack propagation of metallic truss structure under high engine temperature and pressure conditions during the reentry atmosphere. Till now, the multi-scale simulation methods for these processes are still unclear. We explore the deformation and failure processes from macroscale to nanoscale using the Gas-Kinetic Unified Algorithm (GKUA) and all-atomic, molecular dynamic (MD) simulation method. The behaviors of the dislocations, defect evolution and crack propagation until failure for Aluminum-Magnesium (Al-Mg) alloy are considered with the different temperature background and strain fields. The results of distributions of temperature and strain field in the aerodynamic environment obtained by molecular dynamics simulations are in good agreement with those obtained from the macroscopic Boltzmann method. Compared to the tensile loading, the alloy structure is more sensitive to compression loading. The polycrystalline Al-Mg alloy has higher yield strength with a larger grain size. It is due to the translation of plastic deformation mode from grain boundary (GB) sliding to dislocation slip and the accumulation of dislocation line. Our findings have paved a new way to analyze and predict the metallic structural failure by micro-scale analysis under the aerodynamic thermal extreme environment of the reentry spacecraft on service expiration.


Assuntos
Ambientes Extremos , Plásticos , Ligas , Cinética , Simulação de Dinâmica Molecular , Antiácidos , Grão Comestível
2.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682812

RESUMO

Titanium matrix composites (TMCs) with excellent mechanical properties, reinforced by graphene, is deemed the lightweight and high strength structural materials. In this study, TC11 titanium alloy powder and graphene nanosheets (GNPs) were used as raw materials, and the composite powder with good uniformity and fluidity was obtained through non-interventional homogeneous mixing by a planetary mixer. The microstructure and mechanical properties of the GNPs-TC11 composites and TC11 alloy were compared. The results showed that the microstructure of TC11 and the composites was acicular martensite α' phase under the process parameters of 280 W laser power, 1200 mm/s scanning speed, and 0.1 mm hatch spacing. The GNPs in addition, in the composites, reduced the acicular martensite particle size and expanded the proportion of low-angle grain boundaries. The tensile strength and percentage elongation after the fracture of the TC11 titanium alloy were 1265 MPa and 4.3%, respectively. Because of addition of the GNPs, the strength and percentage elongation after the fracture of the composite increased to 1384 MPa and 8.1%, respectively, at a GNPs mass content of 0.2%. The enhancement of mechanical properties can be attributed to grain refinement, dislocation strengthening, Orowan strengthening, and load transfer strengthening.


Assuntos
Ligas , Grafite , Grafite/química , Lasers , Pós , Propriedades de Superfície , Titânio/química
3.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164169

RESUMO

Titanium is a commonly used material in aviation, aerospace, and military applications, due to the outstanding mechanical properties of titanium and its alloys. However, its relatively low thermal conductivity restricts its extended usage. The use of graphene as a filler shows great potential for the enhancement of thermal conductivity in titanium-based metal-matrix composites (MMCs). We used classical molecular dynamics (MD) simulation methods to explore the thermal conductance at the titanium-graphene (Ti/Gr) interface for its thermal boundary conductance, which plays an important role in the thermal properties of Ti-based MMCs. The effects of system size, layer number, temperature, and strain were considered. The results show that the thermal boundary conductance (TBC) decreases with an increasing layer number and reaches a plateau at n = 5. TBC falls under tensile strain and, in turn, it grows with compressive strain. The variation of TBC is explained qualitatively by the interfacial atomic vibration coupling factor. Our findings also provide insights into ways to optimize future thermal management based on Ti-based MMCs materials.

4.
Materials (Basel) ; 13(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882906

RESUMO

Antioxidant packaging is an effective method to protect oxygen-sensitive food from oxidation. In order to concurrently obtain a storage stability and excellent oxygen scavenging of antioxidant film for the high moisture food, a moisture activating oxygen scavenging film was prepared by using tea polyphenols as the oxygen scavenger. The moisture activating function was achieved by introducing the ß-cyclodextrin embedding technology, and the tea polyphenols-ß-cyclodextrin inclusion complex was co-extruded with low-density polyethylene (LDPE) to improve the storage stability. The results indicate that the tea polyphenols is well embedded by ß-cyclodextrin according to the Fourier transform infrared spectra (FT-IR), and a relatively homogeneous dispersion of oxygen scavenger is observed while the oxygen scavenger content is less than 5%. The oxygen scavenging increases with the increase of oxygen scavenger from 1% to 5%, and a maximal oxygen absorption of 0.0150 mol/m2 is exhibited at oxygen scavenger content value of 5%. Then, the oxygen scavenging significantly decrease under the oxygen scavenger content of 7% and 10%. Moreover, the oxygen scavenging amount sharply increase after steeping in water or storage in extremely high humidity of RH 84% while the oxygen scavenging is restrained under RH 32-75%, indicating that the moisture activating oxygen scavenging is functioning. The oxygen scavenging is obvious restrained under low temperature of 4 °C while the oxygen scavenging is activated at 23 °C and 50 °C with similar oxygen scavenging amount. Besides, both of the tensile and heat-sealing strength deteriorative with the increase of oxygen scavenger content, while they are acceptable at oxygen scavenger content of 5%. Finally, the prepared oxygen scavenging film was used for packaging orange juice and received a good antioxidant effect. Thus, the acquired moisture activating oxygen scavenging film has a good stability under regular storage condition, and shows a potentially application for oxygen-sensitive food with high moisture content.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa