Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Biochem Biophys Res Commun ; 593: 5-12, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35051783

RESUMO

Skeletal muscle atrophy caused by various conditions including aging, nerve damage, and steroid administration, is a serious health problem worldwide. We recently reported that neuron-derived neurotrophic factor (NDNF) functions as a muscle-derived secreted factor, also known as myokine, which exerts protective actions on endothelial cell and cardiomyocyte function. Here, we investigated whether NDNF regulates skeletal muscle atrophy induced by steroid administration and sciatic denervation. NDNF-knockout (KO) mice and age-matched wild-type (WT) mice were subjected to continuous dexamethasone (DEX) treatment or sciatic denervation. NDNF-KO mice exhibited decreased gastrocnemius muscle weight and reduced cross sectional area of myocyte fiber after DEX treatment or sciatic denervation compared with WT mice. Administration of an adenoviral vector expressing NDNF (Ad-NDNF) or recombinant NDNF protein to gastrocnemius muscle of WT mice increased gastrocnemius muscle weight after DEX treatment. NDNF-KO mice showed increased expression of ubiquitin E3-ligases, including atrogin-1 and MuRF-1, in gastrocnemius muscle after DEX treatment, whereas Ad-NDNF reduced expression of atrogin-1 and MuRF-1 in gastrocnemius muscle of WT mice after DEX treatment. Pretreatment of cultured C2C12 myocytes with NDNF protein reversed reduced myotube diameter and increased expression of atrogin-1 and MuRF-1 after DEX stimulation. Treatment of C2C12 myocytes increased Akt phosphorylation. Pretreatment of C2C12 myotubes with the PI3-kinase/Akt inhibitor reversed NDNF-induced increase in myotube fiber diameter after DEX treatment. In conclusion, our findings indicated that NDNF prevents skeletal muscle atrophy in vivo and in vitro through reduction of ubiquitin E3-ligases expression, suggesting that NDNF could be a novel therapeutic target of muscle atrophy.


Assuntos
Dexametasona/toxicidade , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Substâncias Protetoras/metabolismo , Animais , Anti-Inflamatórios/toxicidade , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação
2.
FASEB J ; 35(12): e22048, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34807469

RESUMO

In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.


Assuntos
Aquaporinas/metabolismo , Cardiomiopatias/prevenção & controle , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Hipóxia/fisiopatologia , Isquemia/prevenção & controle , Lipase Lipoproteica/fisiologia , Proteínas Mitocondriais/metabolismo , Animais , Aquaporinas/genética , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Glicerolfosfato Desidrogenase/genética , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética
4.
Circ Res ; 125(4): 414-430, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31221024

RESUMO

RATIONALE: Myofibroblasts have roles in tissue repair following damage associated with ischemia, aging, and inflammation and also promote fibrosis and tissue stiffening, causing organ dysfunction. One source of myofibroblasts is mesenchymal stromal/stem cells that exist as resident fibroblasts in multiple tissues. We previously identified meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue), a glycosylphosphatidylinositol-anchored membrane protein, as a specific marker of mesenchymal stromal/stem cells and a regulator of their undifferentiated state. The roles of meflin in the development of heart disease, however, have not been investigated. OBJECTIVE: We examined the expression of meflin in the heart and its involvement in cardiac repair after ischemia, fibrosis, and the development of heart failure. METHODS AND RESULTS: We found that meflin has an inhibitory role in myofibroblast differentiation of cultured mesenchymal stromal/stem cells. Meflin expression was downregulated by stimulation with TGF (transforming growth factor)-ß, substrate stiffness, hypoxia, and aging. Histological analysis revealed that meflin-positive fibroblastic cells and their lineage cells proliferated in the hearts after acute myocardial infarction and pressure-overload heart failure mouse models. Analysis of meflin knockout mice revealed that meflin is essential for the increase in the number of cells that highly express type I collagen in the heart walls after myocardial infarction induction. When subjected to pressure overload by transverse aortic constriction, meflin knockout mice developed marked cardiac interstitial fibrosis with defective compensation mechanisms. Analysis with atomic force microscopy and hemodynamic catheterization revealed that meflin knockout mice developed stiff failing hearts with diastolic dysfunction. Mechanistically, we found that meflin interacts with bone morphogenetic protein 7, an antifibrotic cytokine that counteracts the action of TGF-ß and augments its intracellular signaling. CONCLUSIONS: These data suggested that meflin is involved in cardiac tissue repair after injury and has an inhibitory role in myofibroblast differentiation of cardiac fibroblastic cells and the development of cardiac fibrosis.


Assuntos
Diástole , Imunoglobulinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Regeneração , Animais , Células CHO , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Imunoglobulinas/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/fisiologia , Ligação Proteica
5.
J Biol Chem ; 294(31): 11665-11674, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217281

RESUMO

Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication that have the potential to improve cardiac function when used in cell-based therapy. However, the means by which cardiomyocytes respond to EVs remains unclear. Here, we sought to clarify the role of exosomes in improving cardiac function by investigating the effect of cardiomyocyte endocytosis of exosomes from mesenchymal stem cells on acute myocardial infarction (MI). Exposing cardiomyocytes to the culture supernatant of adipose-derived regenerative cells (ADRCs) prevented cardiomyocyte cell damage under hypoxia in vitro. In vivo, the injection of ADRCs into the heart simultaneous with coronary artery ligation decreased overall cardiac infarct area and prevented cardiac rupture after acute MI. Quantitative RT-PCR-based analysis of the expression of 35 known anti-apoptotic and secreted microRNAs (miRNAs) in ADRCs revealed that ADRCs express several of these miRNAs, among which miR-214 was the most abundant. Of note, miR-214 silencing in ADRCs significantly impaired the anti-apoptotic effects of the ADRC treatment on cardiomyocytes in vitro and in vivo To examine cardiomyocyte endocytosis of exosomes, we cultured the cardiomyocytes with ADRC-derived exosomes labeled with the fluorescent dye PKH67 and found that hypoxic culture conditions increased the levels of the labeled exosomes in cardiomyocytes. Chlorpromazine, an inhibitor of clathrin-mediated endocytosis, significantly suppressed the ADRC-induced decrease of hypoxia-damaged cardiomyocytes and also decreased hypoxia-induced cardiomyocyte capture of both labeled EVs and extracellular miR-214 secreted from ADRCs. Our results indicate that clathrin-mediated endocytosis in cardiomyocytes plays a critical role in their uptake of circulating, exosome-associated miRNAs that inhibit apoptosis.


Assuntos
Clatrina/metabolismo , Endocitose , MicroRNAs/metabolismo , Doença Aguda , Animais , Antagomirs/metabolismo , Apoptose/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Clorpromazina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Endocitose/efeitos dos fármacos , Exossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Circulation ; 140(21): 1737-1752, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31564129

RESUMO

BACKGROUND: Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS: To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS: We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS: Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.


Assuntos
Actinas/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase C/metabolismo , Transativadores/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Circ Res ; 123(12): 1326-1338, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30566056

RESUMO

RATIONALE: Physical exercise provides benefits for various organ systems, and some of systemic effects of exercise are mediated through modulation of muscle-derived secreted factors, also known as myokines. Myonectin/C1q (complement component 1q)/TNF (tumor necrosis factor)-related protein 15/erythroferrone is a myokine that is upregulated in skeletal muscle and blood by exercise. OBJECTIVE: We investigated the role of myonectin in myocardial ischemic injury. METHODS AND RESULTS: Ischemia-reperfusion in myonectin-knockout mice led to enhancement of myocardial infarct size, cardiac dysfunction, apoptosis, and proinflammatory gene expression compared with wild-type mice. Conversely, transgenic overexpression of myonectin in skeletal muscle reduced myocardial damage after ischemia-reperfusion. Treadmill exercise increased circulating myonectin levels in wild-type mice, and it reduced infarct size after ischemia-reperfusion in wild-type mice, but not in myonectin-knockout mice. Treatment of cultured cardiomyocytes with myonectin protein attenuated hypoxia/reoxygenation-induced apoptosis via S1P (sphingosine-1-phosphate)-dependent activation of cAMP/Akt cascades. Similarly, myonectin suppressed inflammatory response to lipopolysaccharide in cultured macrophages through the S1P/cAMP/Akt-dependent signaling pathway. Moreover, blockade of S1P-dependent pathway reversed myonectin-mediated reduction of myocardial infarct size in mice after ischemia-reperfusion. CONCLUSIONS: These data indicate that myonectin functions as an endurance exercise-induced myokine which ameliorates acute myocardial ischemic injury by suppressing apoptosis and inflammation in the heart, suggesting that myonectin mediates some of the beneficial actions of exercise on cardiovascular health.


Assuntos
Citocinas/metabolismo , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Condicionamento Físico Animal/métodos , Animais , Apoptose , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/genética , Citocinas/farmacologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/farmacologia , Músculo Esquelético/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Esfingosina/análogos & derivados , Esfingosina/metabolismo
8.
Circ Res ; 118(11): 1786-807, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230642

RESUMO

Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Microambiente Celular , Obesidade/metabolismo , Adipocinas/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Humanos , Obesidade/complicações , Obesidade/patologia
9.
J Biol Chem ; 291(6): 2566-75, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26631720

RESUMO

Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.


Assuntos
Proteínas de Membrana/metabolismo , Isquemia Miocárdica/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocardite/genética , Miocardite/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
10.
FASEB J ; 30(3): 1065-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26578687

RESUMO

Obesity is associated with an increased risk of cardiovascular disease. C1q/TNF-related protein (CTRP)-1 is a poorly characterized adipokine that is up-regulated in association with ischemic heart disease. We investigated the role of CTRP1 in myocardial ischemia injury. CTRP1-knockout mice showed increased myocardial infarct size, cardiomyocyte apoptosis, and proinflammatory gene expression after I/R compared with wild-type (WT) mice. In contrast, systemic delivery of CTRP1 attenuated myocardial damage after I/R in WT mice. Treatment of cardiomyocytes with CTRP1 led to reduction of hypoxia-reoxygenation-induced apoptosis and lipopolysaccharide-stimulated expression of proinflammatory cytokines, which was reversed by inhibition of sphingosine-1-phosphate (S1P) signaling. Treatment of cardiomyocytes with CTRP1 also resulted in the increased production of cAMP, which was blocked by suppression of S1P signaling. The antiapoptotic and anti-inflammatory actions of CTRP1 were cancelled by inhibition of adenylyl cyclase or knockdown of adiponectin receptor 1. Furthermore, blockade of S1P signaling reversed CTRP1-mediated inhibition of myocardial infarct size, apoptosis, and inflammation after I/R in vivo. These data indicate that CTRP1 protects against myocardial ischemic injury by reducing apoptosis and inflammatory response through activation of the S1P/cAMP signaling pathways in cardiomyocytes, suggesting that CTRP1 plays a crucial role in the pathogenesis of ischemic heart disease.


Assuntos
Adipocinas/metabolismo , Coração/fisiopatologia , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/metabolismo , Animais , Apoptose/fisiologia , AMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa