Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(Web Server issue): W609-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430828

RESUMO

In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method. PharmMapper server is a freely accessed web server designed to identify potential target candidates for the given small molecules (drugs, natural products or other newly discovered compounds with unidentified binding targets) using pharmacophore mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore database (namely PharmTargetDB) annotated from all the targets information in TargetBank, BindingDB, DrugBank and potential drug target database, including over 7000 receptor-based pharmacophore models (covering over 1500 drug targets information). PharmMapper automatically finds the best mapping poses of the query molecule against all the pharmacophore models in PharmTargetDB and lists the top N best-fitted hits with appropriate target annotations, as well as respective molecule's aligned poses are presented. Benefited from the highly efficient and robust triangle hashing mapping method, PharmMapper bears high throughput ability and only costs 1 h averagely to screen the whole PharmTargetDB. The protocol was successful in finding the proper targets among the top 300 pharmacophore candidates in the retrospective benchmarking test of tamoxifen. PharmMapper is available at http://59.78.96.61/pharmmapper.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Software , Antineoplásicos Hormonais/farmacologia , Sítios de Ligação , Bases de Dados Factuais , Internet , Ligantes , Proteínas/química , Proteínas/efeitos dos fármacos , Tamoxifeno/farmacologia , Interface Usuário-Computador
2.
BMC Bioinformatics ; 10: 101, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19335906

RESUMO

BACKGROUND: Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. RESULTS: The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. CONCLUSION: On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of reproducing the bioactive conformations against 329 structures. The speed advantage indicates Cyndi is a powerful alternative method for extensive conformational sampling and large-scale conformer database preparation.


Assuntos
Algoritmos , Conformação Molecular , Software , Simulação por Computador , Bases de Dados Factuais , Desenho de Fármacos , Modelos Moleculares
3.
Cancer Cell ; 30(3): 474-484, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622336

RESUMO

In the cytoplasm of virtually all clear-cell renal cell carcinoma (ccRCC), speckle-type POZ protein (SPOP) is overexpressed and misallocated, which may induce proliferation and promote kidney tumorigenesis. In normal cells, however, SPOP is located in the nucleus and induces apoptosis. Here we show that a structure-based design and subsequent hit optimization yield small molecules that can inhibit the SPOP-substrate protein interaction and can suppress oncogenic SPOP-signaling pathways. These inhibitors kill human ccRCC cells that are dependent on oncogenic cytoplasmic SPOP. Notably, these inhibitors minimally affect the viability of other cells in which SPOP is not accumulated in the cytoplasm. Our findings validate the SPOP-substrate protein interaction as an attractive target specific to ccRCC that may yield novel drug discovery efforts.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Terapia de Alvo Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Phys Chem B ; 118(8): 2009-19, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24521098

RESUMO

The transcriptional coactivator and histone acetyltransferase (HAT) p300 acetylates the four core histones and other transcription factors to regulate a plethora of fundamental biological processes including cell growth, development, oncogenesis and apoptosis. Recent structural and biochemical studies on the p300 HAT domain revealed a Theorell-Chance, or "hit-and-run", catalytic mechanism. Nonetheless, the chemical mechanism of the entire reaction process including the proton transfer (PT) scheme and consequent acetylation reaction route remains unclear. In this study, a combined computational strategy consisting of molecular modeling, molecular dynamic (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) simulation was applied to elucidate these important issues. An initial p300/H3/Ac-CoA complex structure was modeled and optimized using a 100 ns MD simulation. Residues that play important roles in substrate binding and the acetylation reaction were comprehensively investigated. For the first time, these studies reveal a plausible PT scheme consisting of Y1394, D1507, and a conserved crystallographic water molecule, with all components of the scheme being stable during the MD simulation and the energy barrier low for PT to occur. The two-dimensional potential energy surface for the nucleophilic attack process was also calculated. The comparison of potential energies for two possible elimination half-reaction mechanisms revealed that Y1467 reprotonates the coenzyme-A leaving group to form product. This study provides new insights into the detailed catalytic mechanism of p300 and has important implications for the discovery of novel small molecule regulators for p300.


Assuntos
Biocatálise , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Prótons , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetilação , Histonas/química , Histonas/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína
5.
PLoS One ; 8(8): e72424, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977297

RESUMO

Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.


Assuntos
Biocatálise , Modelos Moleculares , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Arginina/metabolismo , Metilação , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Prótons , Teoria Quântica , Ratos , S-Adenosilmetionina/metabolismo , Eletricidade Estática , Termodinâmica
6.
PLoS One ; 7(5): e36660, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574209

RESUMO

The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.


Assuntos
Simulação de Dinâmica Molecular , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetilação , Histonas/química , Histonas/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica
7.
PLoS One ; 6(9): e25444, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21984927

RESUMO

Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated. However, the catalytic mechanism for the rate-limiting reductive half-reaction in demethylation remains controversial. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, the catalytic mechanism of dimethylated H3K4 demethylation by LSD1 was characterized in details. The three-dimensional (3D) model of the complex was composed of LSD1, CoREST, and histone substrate. A 30-ns MD simulation of the model highlights the pivotal role of the conserved Tyr761 and lysine-water-flavin motif in properly orienting flavin adenine dinucleotide (FAD) with respect to substrate. The synergy of the two factors effectively stabilizes the catalytic environment and facilitated the demethylation reaction. On the basis of the reasonable consistence between simulation results and available mutagenesis data, QM/MM strategy was further employed to probe the catalytic mechanism of the reductive half-reaction in demethylation. The characteristics of the demethylation pathway determined by the potential energy surface and charge distribution analysis indicates that this reaction belongs to the direct hydride transfer mechanism. Our study provides insights into the LSD1 mechanism of reductive half-reaction in demethylation and has important implications for the discovery of regulators against LSD1 enzymes.


Assuntos
Biologia Computacional/métodos , Histona Desmetilases/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Simulação de Dinâmica Molecular
8.
J Phys Chem B ; 114(36): 11927-33, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20726530

RESUMO

Sir2, the histone deacetylase III family, has been subjected to a wide range of studies because of their crucial roles in DNA repair, longevity, transcriptional silencing, genome stability, apoptosis, and fat mobilization. The enzyme binds NAD(+) and acetyllysine as substrates and generates lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide as products. However, the mechanism of the first step in Sir2 deacetylation reaction from various studies is controversial. To characterize this catalytic mechanism of acetyllysine deacetylation by Sir2, we employed a combined computational approach to carry out molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations on catalysis by both yeast Hst2 (homologue of SIR two 2) and bacterial Sir2TM (Sir2 homologue from Thermatoga maritima). Our three-dimensional (3D) model of the complex is composed of Sir2 protein, NAD(+), and acetyllysine (ALY) substrate. A 15-ns MD simulation of the complex revealed that Gln115 and His135 play a determining role in deacetylation. These two residues can act as bases to facilitate the deprotonation of 2'-OH from N-ribose. The result is in great agreement with previous mutagenesis analysis data. QM/MM calculations were further performed to study the mechanism of the first step in deacetylation in the two systems. The predicted potential energy barriers for yHst2 and Sir2TM are 12.0 and 15.7 kcal/mol, respectively. The characteristics of the potential energy surface indicated this reaction belongs to a SN2-like mechanism. These results provide insights into the Sir2 mechanism of nicotinamide inhibition and have important implications for the discovery of effectors against Sir2 enzymes.


Assuntos
Proteínas de Bactérias , Proteínas Fúngicas , Simulação de Dinâmica Molecular , Sirtuína 2 , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Ligação de Hidrogênio , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutagênese , Niacinamida/química , Niacinamida/metabolismo , Estrutura Terciária de Proteína , Sirtuína 2/química , Sirtuína 2/genética , Sirtuína 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa