Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4219-4230, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848599

RESUMO

The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO43-) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P-FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P (≡(FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.


Assuntos
Cálcio , Fósforo , Adsorção , Eletricidade Estática , Coloides/química , Porosidade
2.
J Environ Manage ; 330: 117136, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584474

RESUMO

The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/química , Ferro/química , Minerais/química , Carvão Vegetal/química , Adsorção , Óxidos/química , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 56(6): 3524-3534, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226472

RESUMO

The transport of nanoplastics (NPs) through porous media is influenced by dissolved organic matter (DOM) released from agricultural organic inputs. Here, cotransport of NPs with three types of DOM (biocharDOM (BCDOM), wheat strawDOM (WSDOM), and swine manureDOM (SMDOM)) was investigated in saturated goethite (GT)-coated sand columns. The results showed that codeposition of 50 nm NPs (50NPs) with DOM occurred due to the formation of a GT-DOM-50NPs complex, while DOM loaded on GT-coated sand and 400 nm NPs (400NPs) aided 400NPs transport due to electrostatic repulsion. According to the quantum chemical calculation, humic acid and cellulose played a significant role in 50NPs retardation. Owing to its high concentration, moderate humification index (HIX), and cellulose content, SMDOM exhibited the highest retardation of 50NPs transport and promoting effect on 400NPs transport. Owing to a high HIX, the effect of BCDOM on the mobility of 400NPs was higher than that of WSDOM. However, high cellulose content in WSDOM caused it to exhibit a 50NPs retardation ability that was similar to that of BCDOM. Our results highlight the particle size selectivity and significant influence of DOM type on the transport of NPs and elucidate their quantum and colloidal chemical-interface mechanisms in a typical agricultural environment.


Assuntos
Matéria Orgânica Dissolvida , Microplásticos , Animais , Celulose , Substâncias Húmicas/análise , Compostos de Ferro , Minerais , Tamanho da Partícula , Porosidade , Areia , Suínos
4.
Bull Environ Contam Toxicol ; 95(2): 234-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055166

RESUMO

Samples of moss (Haplocladium microphyllum) were collected at different elevations on a mountain and four representative sites in Guiyang City, and the concentrations of metal(loid)s were determined by ICP-MS. The altitudinal deposition of soil-originated metals differed from that of anthropogenic metal(loid)s. The concentrations of soil-related elements decreased with elevation, indicating that these elements tend to deposit at lower elevations and their impact on the higher elevations is less. The concentrations of anthropogenic elements varied only slightly with elevation, indicating that the atmospheric deposition of these elements did not vary largely with elevation. The results of this study showed that the mosses at different locations may serve to indicate a vertical gradient of atmospheric metal(loid) deposition.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Bryopsida/química , Metais/análise , Altitude , China , Cidades , Monitoramento Ambiental/métodos
5.
J Colloid Interface Sci ; 632(Pt B): 335-344, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436392

RESUMO

Nanoplastics (NPs) and natural organic matter (NOM) are ubiquitous and usually present simultaneously in the environment. Both NPs and NOM can be adsorbed to minerals such as iron-(hydr)oxides, with such interactions being important for controlling their fate in the environment. However, the quantification of NPs and NOM in mixtures remains challenging even under controlled conditions in laboratory studies. In this research, a UV-Vis method was established to quantify concentrations of NOM, such as humic acid (HA) and fulvic acid (FA), and polystyrene NPs (PSNPs) in mixtures. In addition, both original NOM samples and those recovered following adsorptive fractionation using an iron oxide (goethite, α-FeOOH) were mixed separately with PSNPs and their concentrations were further calculated via the developed UV-Vis method. The UV-Vis method performed well (recovery of 100 ± 16 %) with original NOM and PSNPs system at detection limits of 20.8 and 7.4 mgC L-1, respectively. Particularly, for original FA and PSNPs systems with carboxylic groups (PSNPs-COOH, 200 nm), a similar recovery rate could be obtained at detection limits of only 2.5 and 1.9 mgC L-1, respectively. For fractionated NOM and PSNPs systems, detection limits (31.2 mgC L-1 and 27.5 mgC L-1, respectively) are increased to reach the same accuracy. Furthermore, the UV-Vis method can be used to estimate the proportion of HA that is adsorbed to PSNPs. The relative errors are < 13.7 % when the mass ratios of PSNPs and HA was between 1.6:1 and 8:1 and HA concentration was higher than 4.6 mgC L-1. This method developed can be applied to future laboratory research to investigate the interaction between NOM, NPs, and minerals.


Assuntos
Ferro , Microplásticos , Adsorção , Fracionamento Químico , Poliestirenos
6.
J Hazard Mater ; 453: 131421, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080031

RESUMO

Atmospheric deposition is an essential cadmium (Cd) pollution source in agricultural ecosystems, entering crops via roots and leaves. In this study, atmospherically deposited Cd was simulated using cadmium sulfide nanoparticles (CdSN), and chili (Capsicum frutescens L.) was used to conduct a comparative foliar and root experiment. Root and foliar uptake significantly increased the Cd content of chili tissues as well as the subcellular Cd content. Scanning electron microscopy and high-resolution secondary ion mass spectrometry showed that Cd that entered the leaves via stomata was fixed in leaf cells, and the rest was mainly through phloem transport to the other organs. In leaf, stem, and root cell walls, Cd signal intensities were 47.4%, 72.2%, and 90.0%, respectively. Foliar Cd uptake significantly downregulated purine metabolism in leaves, whereas root Cd uptake inhibited stilbenoid, diarylheptanoid, and gingerol biosynthesis in roots. Root uptake contributed 90.4% Cd in fruits under simultaneous root and foliar uptake conditions attributed to xylem and phloem involvement in Cd translocation. Moreover, root uptake had a more significant effect on fruit metabolic pathways than foliar uptake. These findings are critical for choosing pollution control technologies and ensuring food security.


Assuntos
Cádmio , Poluentes do Solo , Ecossistema , Metabolômica , Transporte Biológico , Agricultura , Folhas de Planta , Raízes de Plantas
7.
J Hazard Mater ; 431: 128624, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278953

RESUMO

Atmospherically deposited cadmium (Cd) may accumulate in plants through foliar uptake; however, the foliar uptake, accumulation, and distribution processes of Cd are still under discussion. Atmospherically deposited Cd was simulated using cadmium sulfide (CdS) with various particle sizes and solubility. Water spinach (Ipomoea aquatica Forsk, WS) and pak choi (Brassica chinensis L., PC) leaves were treated with suspensions of CdS nanoparticles (CdSN), which entered the leaves via the stomata. Cd concentrations of WS and PC leaves treated with 125 mg L-1 CdSN reached up to 39.8 and 11.0 mg kg-1, respectively, which are higher than the critical leaf concentration for toxicity. Slight changes were observed in fresh biomass, photosynthetic parameters, lipid peroxidation, and mineral nutrient uptake. Exposure concentration, rather than particle size or solubility, regulated the foliar uptake and accumulation of Cd. Subcellular and the high-resolution secondary ion mass spectrometry (NanoSIMS) results revealed that Cd was majorly stored in the soluble fraction and cell walls, which is an important Cd detoxification mechanism in leaves. The potential health risks associated with consuming CdS-containing vegetables were highlighted. These findings facilitate a better understanding of the fate of atmospheric Cd in plants, which is critical in ensuring food security.


Assuntos
Brassica , Ipomoea , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Folhas de Planta/química , Poluentes do Solo/análise , Verduras
8.
Chemosphere ; 286(Pt 3): 131965, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34449324

RESUMO

The production and degradation of plastic remains can result in nanoplastics (NPs) formation. However, insufficient information regarding the environmental behaviors of NPs impedes comprehensive assessment of their significant threats. In this study, the transport behavior of unmodified NPs (PSNPs), carboxyl-modified NPs (PSNPs-COOH), and amino-modified NPs (PSNPs-NH2) was investigated using column experiments in the presence and absence of goethite (GT) and diethylhexyl phthalate (DEHP). Quantum chemical computation was performed to reveal the transport mechanisms. The results showed that GT decreased the transport of NPs and the presence of DEHP decreased it further. Van der Waals forces and small electrostatic interactions coexisted between the PSNPs and GT and caused deposition. Ligand exchange caused greater deposition of PSNPs-COOH on GT-coated sand than that of PSNPs. Although hydrogen bonding existed between the DEHP and NPs with functional groups, an increase in the positive charge and chemical heterogeneity of the collector was the main reason for DEHP promoting the deposition of NPs. Because of low absolute negative zeta potential values, PSNPs-NH2 was sensitive to chemical heterogeneity, and thus fully deposited (over 96.9%) in GT and GT-DEHP-coated columns. Generally, the deposition of NPs due to chemical heterogeneity was more significant than that due to the formation of chemical bonds and van der Waals, electrostatic, and hydrogen interactions. Our results highlight that the surface charge and functional groups significantly influence the transport behaviors of NPs and elucidate the fate of NPs in the terrestrial environment.


Assuntos
Dietilexilftalato , Microplásticos , Plásticos , Poliestirenos , Areia
9.
Chemosphere ; 276: 130012, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088086

RESUMO

Iron (Fe) minerals, organic matter (OM), and pH can effectively regulate phosphorus (P) transport in the soil. However, their respective contributions in this regard are still unclear. In this study, P transport in soil columns was investigated by monitoring breakthrough curves and transport model fitting, and the contributions of Fe and total organic carbon (TOC) concentrations, as well as pH to P retention, were determined using multiple linear regression (MLR). The results showed that the rate of P transport in Fe-rich laterite soil was significantly lower (retardation factor R = 458.5) than that in the other soil types (R = 108.4-247.6). Additionally, it was observed that OM formed rate-limited adsorption sites, causing the rapid release of labile P, and owing to P release and readsorption. Even though more significant P releases were observed, chernozem soil had an obvious inhibiting effect on P transport owing to its relatively high Fe content, and the high P-Fe increment (48.9-90.4%) indicated the essential role of Fe minerals in P immobilization. Further, P was readily transported in natural or artificially modified fluvo-aquic soils with high calcium concentrations, and it was also observed that the convection-dispersion equation (CDE) and Thomas models were suitable for describing P retardation and adsorption, respectively. Furthermore, the contribution weights of Fe and TOC concentrations as well as pH to P retardation, based on MLR calculations, were approximately 1.0, -0.3, and -0.2, respectively. Our findings can support the control of eutrophication pollution caused by P leaching.


Assuntos
Poluentes do Solo , Solo , Adsorção , Eutrofização , Fósforo , Poluentes do Solo/análise
10.
Chemosphere ; 280: 130731, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971411

RESUMO

Cd and As are difficult to co-remediate in co-contaminated soils. In this study, remediation materials comprising large-grained and nano-sized biochar (BC), ferrihydrite (FH), and complexes thereof were added to Cd- and As-contaminated soil. The uptake of Cd and As by pak choi (Brassica chinensis L.) was then evaluated using a pot experiment and the Cd and As concentrations of the soil pore water and leaching water were measured. The Cd and As concentrations of the pore and leaching water were slightly increased with the addition of BC, and decreased with addition of FH and the biochar-ferrihydrite complex (BC-FH). However, nano-sized BC (BCN), FH (FHN), and BC-FH (BC-FHN) had little influence on the decreases in Cd and As of the two monitored water types. Large-grained remediation materials, rather than nanomaterials, decreased the Cd and As concentrations of the two monitored water types. Nonetheless, nanomaterial treatments more effectively decreased the Cd and As concentrations in plants by an average of >10% relative to the large-grained treatments. The DLVO theory analysis suggested that BCN, FHN, and BC-FHN, immobilized in the topsoil, adsorbed heavy metals in the rhizosphere soil. The remainder of the nano-sized materials was dispersed in the rhizosphere soil pores, shielding the uptake of Cd and As by the roots. Although the doses of nanomaterials used in this study were less than one-fortieth of those of the large-grained materials, changes in the plant rhizosphere microenvironment caused by the nanomaterials decreased the risk of toxicity transfer from the soil to the plants.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Compostos Férricos , Solo , Poluentes do Solo/análise
11.
Environ Sci Pollut Res Int ; 27(29): 36377-36390, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562227

RESUMO

The consumption of agricultural products grown on paddy soils contaminated with toxic element has a detrimental effect on human health. However, the processes and mechanisms of iron (Fe) mineral-associated arsenic (As) availability and As reactivity in different paddy soil profiles are not well understood. In this study, the fractions, immobilization, and release risk of As in eleven soil profiles from the Changzhutan urban agglomeration in China were investigated; these studied soils were markedly contaminated with As. Sequential extraction experiments were used to analyze fractions of As and Fe oxide minerals, and kinetic experiments were used to characterize the reactivity of Fe oxide minerals. The results showed that concentrations of total As and As fractions had a downward trend with depth, but the average proportions of As fractions only showed relatively small changes, which implied that the decrease in the total As concentrations influenced the changes in fraction concentrations along the sampling depth. Moreover, we found that easily reducible Fe (Feox1) mainly controlled the reductive dissolution of the Fe oxides, which suggest that the reductive dissolution process could potentially release As during the flooded period of rice production. In addition, a high proportion of As was specifically absorbed As (As-F2) (average 20.4%) in paddy soils, higher than that in other soils. The total organic carbon (TOC) content had a positive correlation with the amount of non-specifically bound As (As-F1) (R = 0.56), which means that TOC was one factor that affected the As extractability in the As-F1. Consequently, high inputs of organic fertilizers may elevate the release of As and accelerate the diffusion of As. Graphical abstract.


Assuntos
Arsênio/análise , Oryza , Poluentes do Solo/análise , China , Compostos Férricos , Minerais , Solo
12.
Huan Jing Ke Xue ; 36(4): 1338-44, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26164909

RESUMO

An electrochemical hydride generation method was developed for the removal of antimony in wastewater. Hydrogen was generated in the electrolysis of water. Hydrogen reacted with Sb and formed stibine, which volatilized from the solution. Then, stibine was heated and decomposed to elemental Sb. Based on these, Sb in wastewater could be removed and recovered. The highest removal of Sb (76.1%) was achieved in acidic solution (pH = 4). The formation of stibine was proven to contribute most significantly (66.2%) to the removal of antimony in the solution, while the electro-deposition and adsorption also made a small contribution. In the treatment, Sb(V) must be pre-reduced to Sb(III) prior to the formation of stibine. Lead, graphite and tungsten were employed as the materials for cathode, and lead electrode was found most suitable for the removal of antimony.


Assuntos
Antimônio/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Hidrogênio , Soluções , Tungstênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa